python类set_trace()的实例源码

BatchManagerFile.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def getBatch_(self, indices):
        # format NxCHxWxH
        batchRGB = np.zeros((len(indices), self.CH, self.W, self.H), dtype='float32')
        batchLabel = np.zeros((len(indices), self.W, self.H), dtype='int32')

        k = 0
        for i in indices:
            (rgbname, gtname) = self.flist[i]

            # format: HxWxCH
            rgb =  misc.imread(rgbname)

            if(gtname.endswith('.png')):
                gt = misc.imread(gtname)
            else:
                gt = np.loadtxt(gtname)
            gt = gt.astype('uint8')

            if(self.data_transformer is not None):
                rgb = self.data_transformer.transformData(rgb)
                gt = self.data_transformer.transformLabel(gt)
            #^ data_transformer outputs in format HxWxCH

            # convertion from HxWxCH to CHxWxH
            batchRGB[k,:,:,:] = rgb.astype(np.float32).transpose((2,1,0))
            batchLabel[k,:,:] = gt.astype(np.int32).transpose((1,0))

            k += 1

            #ipdb.set_trace()

        if(self.weights_classes_flag):
            return (batchRGB, batchLabel, self.weights_classes)
        else:
            return (batchRGB, batchLabel)
basicTrainer.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def saveInfo(self, model, optimizer, smanager, epoch, outputFolder, saveEach):
        #ipdb.set_trace()
        if(epoch % saveEach == 0):
            if(not os.path.exists(outputFolder)):
                os.makedirs(outputFolder)
            bname = outputFolder + '/' + model.getName() + '_' + str(epoch)
            serializers.save_npz(bname + '.model', model)
            serializers.save_npz(bname + '.state', optimizer)
            smanager.save(bname + '.stats')
TinynetUnpooling.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __call__(self, input_blob, test_mode=False):
        # explicit and very flexible DAG!
        #################################
        data = input_blob[0]
        labels = input_blob[1]

        if(len(input_blob) >= 3):
            weights_classes = input_blob[2]
        else:
            weights_classes = chainer.Variable(cuda.cupy.ones((self.classes, 1), dtype='float32'))

        # ---- CONTRACTION BLOCKS ---- #
        blob_b0  = self.bnorm0(data)
        (blob_b1, indices_b1, size_b1)  = F.max_pooling_2dIndices(self.bnorm1(F.relu(self.conv1(blob_b0)), test=test_mode), (2, 2), stride=(2,2), pad=(0, 0))
        (blob_b2, indices_b2, size_b2)  = F.max_pooling_2dIndices(self.bnorm2(F.relu(self.conv2(blob_b1)), test=test_mode), (2, 2), stride=(2,2), pad=(0, 0))
        (blob_b3, indices_b3, size_b3)  = F.max_pooling_2dIndices(self.bnorm3(F.relu(self.conv3(blob_b2)), test=test_mode), (2, 2), stride=(2,2), pad=(0, 0))
        (blob_b4, indices_b4, size_b4)  = F.max_pooling_2dIndices(self.bnorm4(F.relu(self.conv4(blob_b3)), test=test_mode), (2, 2), stride=(2,2), pad=(0, 0))

        # ---- EXPANSION BLOCKS ---- #
        blob_b5  = self.bnorm5(F.relu(self.conv5(F.unpooling_2d(blob_b4, indices_b4, size_b4))), test=test_mode)
        blob_b6  = self.bnorm6(F.relu(self.conv6(F.unpooling_2d(blob_b5, indices_b3, size_b3))), test=test_mode)
        blob_b7  = self.bnorm7(F.relu(self.conv7(F.unpooling_2d(blob_b6, indices_b2, size_b2))), test=test_mode)
        blob_b8  = self.bnorm8(F.relu(self.conv8(F.unpooling_2d(blob_b7, indices_b1, size_b1))), test=test_mode)

        #ipdb.set_trace()

        # ---- SOFTMAX CLASSIFIER ---- #
        self.blob_class = self.classi(blob_b8)
        self.probs = F.softmax(self.blob_class)

        # ---- CROSS-ENTROPY LOSS ---- #
        #ipdb.set_trace()
            self.loss = F.weighted_cross_entropy(self.probs, labels, weights_classes, normalize=True)
        self.output_point = self.probs

        return self.loss
combine_network.py 文件源码 项目:deep_portfolio 作者: deependersingla 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def get_rescaled_value_from_model(model, data):
    try:
        predicted_value = get_data_from_model(model, data)
    except:
        ipdb.set_trace();
    return (predicted_value - data.mean())/data.std()
equity_environment.py 文件源码 项目:deep_portfolio 作者: deependersingla 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, assets, look_back, episode_length, look_back_reinforcement, price_series, train):
        # think about it whether its needed or not
        self.action_repeat = 2

        self.gym_actions = range(len(assets) + 1)

        self.look_back = look_back
        total_data = pd.read_csv("../data/all_data.csv")
        cut_index = int(total_data.shape[0] * 0.8)
        if train:
            data = total_data[0:cut_index]
        else:
            data = total_data[cut_index:-1]
        self.look_back = look_back
        self.assets_index = range(0, (len(self.gym_actions)) * 4, 4)[1:]
        self.look_ahead = 1
        self.batch_size = 50
        self.look_back_reinforcement = look_back_reinforcement
        self.total_data = pandas_split_series_into_list(data, self.look_back + episode_length + 1)
        # ipdb.set_trace();
        # self.numpy_data = self.data.as_matrix()
        self.price_series = price_series
        self.episode_length = episode_length
        self.models = make_asset_input(assets, look_back, self.look_ahead, self.batch_size)
        # self.models = [0,1]
        self.assets = assets
test_ipdb.py 文件源码 项目:python_for_linux_system_administration 作者: lalor 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def sum_nums(n):
    s=0
    for i in range(n):
        ipdb.set_trace()
        s += i
        print(s)
test_preprocess.py 文件源码 项目:rsmtool 作者: EducationalTestingService 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_filter_on_flag_column_nothing_left():
    bad_df = pd.DataFrame({'spkitemid': ['a1', 'b1', 'c1', 'd1'],
                           'sc1': [1, 2, 1, 3],
                           'feature': [2, 3, 4, 5],
                           'flag1': [1, 0, 20, 14],
                           'flag2': [1, 1.0, 'TD', '03']})

    flag_dict = {'flag1': [1, 0, 14], 'flag2': ['TD']}

    df_new, df_excluded = filter_on_flag_columns(bad_df, flag_dict)
    import ipdb
    ipdb.set_trace()
views.py 文件源码 项目:fileserver-chat 作者: tanmaydatta 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def poll():
    # global curr_time
    # ipdb.set_trace()
    global curr_time
    # curr = session['curr']
    while os.path.isfile('/mnt/lock'):
        pass
    a = soldier.run('sudo touch /mnt/lock', sudo=syspass)
    resp = []
    f = open('/mnt/chat.txt', 'r')
    lines = f.readlines()
    print lines
    for line in lines:
        tm = line.split("$$$")[0]
        print str(curr_time) + "   $$$   " + str(tm) 
        print int(tm) > int(curr_time)
        if int(tm) > int(curr_time):
            tt = datetime.datetime.fromtimestamp(int(tm)/1000).strftime('%Y-%m-%d %H:%M:%S')
            try:
                resp.append(tt + ' : ' + line.split("$$$")[1] + ' : ' + line.split("$$$")[2] )
                curr_time = int(tm)
            except:
                pass
            try:
                curr_time = int(tm)
            except:
                pass
    f.close()
    a = soldier.run('sudo rm /mnt/lock', sudo=syspass)
    # session['curr'] = curr
    return resp
    # return 'hello'
views.py 文件源码 项目:fileserver-chat 作者: tanmaydatta 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def send(msg,tm):
    # ipdb.set_trace()
    curr = tm
    while os.path.isfile('/mnt/lock'):
        pass
    a = soldier.run('sudo touch /mnt/lock', sudo=syspass)
    resp = []
    f = open('/mnt/chat.txt', 'a')
    f.write(str(curr) + '$$$' + str(session['name']) + '$$$' + msg + '\n')
    f.close()
    a = soldier.run('sudo rm /mnt/lock', sudo=syspass)
    return "success"
__init__.py 文件源码 项目:frappuccino 作者: Carreau 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def params_compare(old_ps, new_ps):
    try:
        from itertools import zip_longest
        for (o, ov), (n, nv) in zip_longest(old_ps.items(), new_ps.items(), fillvalue=(None, None)):
            if o == n and ov == nv:
                continue
            param_compare(ov, nv)
    except:
        import ipdb
        ipdb.set_trace()
blocks_utils.py 文件源码 项目:Attentive_reader 作者: caglar 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def ipdb_breakpoint(x):
    """A simple hook function for :func:`put_hook` that runs ipdb.

    Parameters
    ----------
    x : :class:`~numpy.ndarray`
        The value of the hooked variable.

    """
    import ipdb
    ipdb.set_trace()
aegan_reid_5000.py 文件源码 项目:Keras-GAN 作者: Shaofanl 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def feature(aegan, filename):
    import ipdb
    with ipdb.launch_ipdb_on_exception():
        aegan.load(prefix='./samples/reid_aegan/aegan/50')

        paths = map(lambda x: x.strip(), open('protocol/cuhk01-all.txt').readlines())
        x = transform( np.array([load_image(path, (64, 128)) for path in paths]) )
        code = aegan.autoencoder.encoder.predict(x)

    ipdb.set_trace()
aegan_reid_5000.py 文件源码 项目:Keras-GAN 作者: Shaofanl 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test(aegan, prefix):
    import ipdb
    with ipdb.launch_ipdb_on_exception():
        aegan.load(prefix=prefix)

        from GAN.utils.vis import vis_grid
        vis_grid(inverse_transform(aegan.generator.random_generate(128)), (2, 20), 'random_generate.png')

        paths = map(lambda x: x.strip(), open('protocol/cuhk01-all.txt').readlines())
        from load import load_image
        sample = transform( np.array([load_image(path, (64, 128)) for path in paths[:128]]) )

        vis_grid(inverse_transform(sample), (2, 20), 'sample.png')
        vis_grid(inverse_transform(aegan.autoencoder.autoencoder.predict(sample)), (2, 20), 'reconstruct.png')


        import matplotlib
        matplotlib.use('Agg')
        import matplotlib.pyplot as plt
#       codes = aegan.autoencoder.encoder.predict(sample)
#       codes = aegan.generator.sample(128)
        codes = aegan.autoencoder.encoder.predict(aegan.generator.random_generate(128))


        for ind, code in enumerate(codes):
            n, bins, patches = plt.hist(code, 50, normed=1, facecolor='green', alpha=0.75)
            plt.savefig('test/{}.pdf'.format(ind))
            plt.clf()

    ipdb.set_trace()
aegan_reid.py 文件源码 项目:Keras-GAN 作者: Shaofanl 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def feature(aegan, filename):
    import ipdb
    with ipdb.launch_ipdb_on_exception():
        aegan.load(prefix='./samples/reid_aegan/aegan/50')

        paths = map(lambda x: x.strip(), open('protocol/cuhk01-all.txt').readlines())
        x = transform( np.array([load_image(path, (64, 128)) for path in paths]) )
        code = aegan.autoencoder.encoder.predict(x)

    ipdb.set_trace()
aegan_reid.py 文件源码 项目:Keras-GAN 作者: Shaofanl 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test(aegan, prefix):
    import ipdb
    with ipdb.launch_ipdb_on_exception():
        aegan.load(prefix=prefix)

        from GAN.utils.vis import vis_grid
        vis_grid(inverse_transform(aegan.generator.random_generate(128)), (2, 20), 'random_generate.png')

        paths = map(lambda x: x.strip(), open('protocol/cuhk01-all.txt').readlines())
        from load import load_image
        sample = transform( np.array([load_image(path, (64, 128)) for path in paths[:128]]) )

        vis_grid(inverse_transform(sample), (2, 20), 'sample.png')
        vis_grid(inverse_transform(aegan.autoencoder.autoencoder.predict(sample)), (2, 20), 'reconstruct.png')


        import matplotlib
        matplotlib.use('Agg')
        import matplotlib.pyplot as plt
#       codes = aegan.autoencoder.encoder.predict(sample)
#       codes = aegan.generator.sample(128)
        codes = aegan.autoencoder.encoder.predict(aegan.generator.random_generate(128))


        for ind, code in enumerate(codes):
            n, bins, patches = plt.hist(code, 50, normed=1, facecolor='green', alpha=0.75)
            plt.savefig('test/{}.pdf'.format(ind))
            plt.clf()

    ipdb.set_trace()
load_and_play.py 文件源码 项目:Keras-GAN 作者: Shaofanl 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def feature_aegan(aegan, modelname, protoname):
    with ipdb.launch_ipdb_on_exception():
        aegan.load(prefix=modelname)

        x = transform(load_all(protoname, (npxw, npxh)))
        code = aegan.autoencoder.encoder.predict(x)

    ipdb.set_trace()
bricks.py 文件源码 项目:lmkit 作者: jiangnanhugo 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def apply(self, inputs, gate_inputs, mask=None):
        def step(inputs, gate_inputs, states, state_to_gates, state_to_state):
            #import ipdb
            #ipdb.set_trace()
            gate_values = self.gate_activation.apply(
                states.dot(self.state_to_gates) + gate_inputs)
            update_values = gate_values[:, :self.dim]
            reset_values = gate_values[:, self.dim:]
            states_reset = states * reset_values
            next_states = self.activation.apply(
                states_reset.dot(self.state_to_state) + inputs)
            next_states = (next_states * update_values +
                           states * (1 - update_values))
            return next_states

        def step_mask(inputs, gate_inputs, mask_input, states, state_to_gates, state_to_state):
            next_states = step(inputs, gate_inputs, states, state_to_gates, state_to_state)
            if mask_input:
                next_states = (mask_input[:, None] * next_states +
                               (1 - mask_input[:, None]) * states)
            return next_states


        if mask:
            func = step_mask
            sequences = [inputs, gate_inputs, mask]
        else:
            func = step
            sequences = [inputs, gate_inputs]
        #[dict(input=inputs), dict(input=gate_inputs), dict(input=mask)]
        output = tensor.repeat(self.params[2].dimshuffle('x',0), inputs.shape[1], axis=0)
        states_output, _ = theano.scan(fn=func,
                sequences=sequences,
                outputs_info=[output],
                non_sequences=[self.state_to_gates, self.state_to_state],
                strict=True,
                #allow_gc=False)
                )

        return states_output
bricks.py 文件源码 项目:lmkit 作者: jiangnanhugo 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def apply(self, inputs, update_inputs, reset_inputs, mask=None):
        def step(inputs, update_inputs, reset_inputs, states, state_to_update, state_to_reset, state_to_state):
            #import ipdb
            #ipdb.set_trace()
            reset_values = self.gate_activation.apply(
                    states.dot(self.state_to_reset) + reset_inputs)

            update_values = self.gate_activation.apply(
                    states.dot(self.state_to_update) + update_inputs)

            next_states_proposed = self.activation.apply(
                (states * reset_values).dot(self.state_to_state) + inputs)

            next_states = (next_states_proposed * update_values +
                           states * (1 - update_values))
            return next_states

        def step_mask(inputs, update_inputs, reset_inputs, mask_input, states, state_to_update, state_to_reset, state_to_state):
            next_states = step(inputs, updatE_inputs, reset_inputs, states, state_to_update, state_to_reset, state_to_state)
            if mask_input:
                next_states = (mask_input[:, None] * next_states +
                               (1 - mask_input[:, None]) * states)
            return next_states


        if mask:
            func = step_mask
            sequences = [inputs, update_inputs, reset_inputs, mask]
        else:
            func = step
            sequences = [inputs, update_inputs, reset_inputs]
        #[dict(input=inputs), dict(input=gate_inputs), dict(input=mask)]
        #output = tensor.repeat(self.params[2].dimshuffle('x',0), inputs.shape[1], axis=0)
        states_output, _ = theano.scan(fn=func,
                sequences=sequences,
                outputs_info=[self.initial_state('initial_state', inputs.shape[1])],
                non_sequences=[self.state_to_reset, self.state_to_update, self.state_to_state],
                strict=True,
                allow_gc=False)

        return states_output
py2.py 文件源码 项目:packyou 作者: llazzaro 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_or_create_module(self, fullname):
        """
            Given a name and a path it will return a module instance
            if found.
            When the module could not be found it will raise ImportError
        """
        LOGGER.info('Loading module {0}'.format(fullname))
        parent, _, module_name = fullname.rpartition('.')
        if fullname in modules:
            LOGGER.info('Found cache entry for {0}'.format(fullname))
            return modules[fullname]

        module = modules.setdefault(fullname, imp.new_module(fullname))
        if len(fullname.strip('.')) > 3:
            absolute_from_root = fullname.split('.', 3)[-1]
            modules.setdefault(absolute_from_root, module)
        if len(fullname.split('.')) == 4:
            # add the root of the project
            modules[fullname.split('.')[-1]] = module
        # required by PEP 302
        module.__file__ = self.get_filename(fullname)
        LOGGER.info('Created module {0} with fullname {1}'.format(self.get_filename(fullname), fullname))
        module.__name__ = fullname
        module.__loader__ = self
        module.__path__ = self.path
        if self.is_package(fullname):
            module.__path__ = self.path
            module.__package__ = fullname
        else:
            module.__package__ = fullname.rpartition('.')[0]

        LOGGER.debug('loading file {0}'.format(self.get_filename(fullname)))
        source = self.get_source(fullname)
        try:
            exec(source, module.__dict__)
        except Exception as ex:
            ipdb.set_trace()
        return module
categorical.py 文件源码 项目:gail-driver 作者: sisl 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def sample(self, dist_info):
        samples = self._f_sample(dist_info["prob"])
        import ipdb
        ipdb.set_trace()


问题


面经


文章

微信
公众号

扫码关注公众号