python类heappush()的实例源码

TransE.py 文件源码 项目:MTransE 作者: muhaochen 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def kNN_entity(self, vec, topk=10, method=0, self_vec_id=None):
        q = []
        for i in range(len(self.vec_e)):
            #skip self
            if self_vec_id != None and i == self_vec_id:
                continue
            if method == 1:
                dist = SP.distance.cosine(vec, self.vec_e[i])
            else:
                dist = LA.norm(vec - self.vec_e[i])
            if len(q) < topk:
                HP.heappush(q, self.index_dist(i, dist))
            else:
                #indeed it fetches the biggest
                tmp = HP.nsmallest(1, q)[0]
                if tmp.dist > dist:
                    HP.heapreplace(q, self.index_dist(i, dist) )
        rst = []
        while len(q) > 0:
            item = HP.heappop(q)
            rst.insert(0, (self.vocab_e[self.vec2e[item.index]], item.dist))
        return rst

    #given entity name, find kNN
whatstyle.py 文件源码 项目:whatstyle 作者: mikr 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def update_evaluations(formatter,  # type: CodeFormatter
                       evaluations,  # type: List[AttemptResult]
                       finished_styles,  # type: List[AttemptResult]
                       bestdist  # type: Sequence[int]
                       ):
    # type: (...) -> Tuple[bool, bool, Sequence[int]]
    attemptresult = heapq.heappop(evaluations)
    nested_round = False
    if bestdist is None or (distquality(attemptresult.distance) < distquality(bestdist)):
        bestdist = attemptresult.distance
        heapq.heappush(evaluations, attemptresult)
    else:
        # We found a style that could no longer be improved by adding a single option value.
        heapq.heappush(finished_styles, attemptresult)
        nested_styles = formatter.nested_derivations(attemptresult.formatstyle)
        if not nested_styles:
            # This formatstyle does not unlock more options.
            return True, nested_round, bestdist
        # Restart the optimization from scratch with the attemptresult augmented with
        # every nested option as seed styles.
        bestdist = None
        ndist = (HUGE_DISTANCE, HUGE_DISTANCE, HUGE_DISTANCE, HUGE_DISTANCE)
        evaluations[:] = [AttemptResult(ndist, s) for s in nested_styles]
        nested_round = True
    return False, nested_round, bestdist
strategy.py 文件源码 项目:speccer 作者: bensimner 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __next__(self):
        if not self._pq:
            raise StopIteration

        pair = heapq.heappop(self._pq)
        t = pair.x

        for i in range(self._n):
            v = t[i] + 1
            tp = t[:i] + (v,) + t[i + 1:]

            if v > self.max_sizes[i]:
                if i not in self.continuation:
                    self.continuation[i] = tp
                continue

            if tp not in self._memo:
                pair = PairGen._Pair(*tp)
                heapq.heappush(self._pq, pair)
                self._memo[tp] = True

        return t
container.py 文件源码 项目:deb-python-pyngus 作者: openstack 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def need_processing(self):
        """A utility to help determine which connections need
        processing. Returns a triple of lists containing those connections that
        0) need to read from the network, 1) need to write to the network, 2)
        waiting for pending timers to expire.  The timer list is sorted with
        the connection next expiring at index 0.
        """
        readers = []
        writers = []
        timer_heap = []
        for c in iter(self._connections.values()):
            if c.needs_input > 0:
                readers.append(c)
            if c.has_output > 0:
                writers.append(c)
            if c.deadline:
                heapq.heappush(timer_heap, (c.next_tick, c))
        timers = []
        while timer_heap:
            x = heapq.heappop(timer_heap)
            timers.append(x[1])

        return (readers, writers, timers)
recipe-577892.py 文件源码 项目:code 作者: ActiveState 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def dijkstra(adj, costs, s, t):
    ''' Return predecessors and min distance if there exists a shortest path 
        from s to t; Otherwise, return None '''
    Q = []     # priority queue of items; note item is mutable.
    d = {s: 0} # vertex -> minimal distance
    Qd = {}    # vertex -> [d[v], parent_v, v]
    p = {}     # predecessor
    visited_set = set([s])

    for v in adj.get(s, []):
        d[v] = costs[s, v]
        item = [d[v], s, v]
        heapq.heappush(Q, item)
        Qd[v] = item

    while Q:
        print Q
        cost, parent, u = heapq.heappop(Q)
        if u not in visited_set:
            print 'visit:', u
            p[u]= parent
            visited_set.add(u)
            if u == t:
                return p, d[u]
            for v in adj.get(u, []):
                if d.get(v):
                    if d[v] > costs[u, v] + d[u]:
                        d[v] =  costs[u, v] + d[u]
                        Qd[v][0] = d[v]    # decrease key
                        Qd[v][1] = u       # update predecessor
                        heapq._siftdown(Q, 0, Q.index(Qd[v]))
                else:
                    d[v] = costs[u, v] + d[u]
                    item = [d[v], u, v]
                    heapq.heappush(Q, item)
                    Qd[v] = item

    return None
cron.py 文件源码 项目:abusehelper 作者: Exploit-install 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _merge(sorted_iterables):
    """
    >>> list(_merge([(1, 2, 3), (0, 2, 4)]))
    [0, 1, 2, 2, 3, 4]
    """

    heap = []

    for iterable in sorted_iterables:
        iterator = iter(iterable)

        for value in iterator:
            heapq.heappush(heap, (value, iterator))
            break

    while heap:
        value, iterator = heapq.heappop(heap)

        yield value

        for value in iterator:
            heapq.heappush(heap, (value, iterator))
            break
ranking.py 文件源码 项目:ltls 作者: kjasinska 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def create_ranking2(edge_weight, k, adj, num):
    sink = len(adj)
    heaps = [[] for i in xrange(sink + 1)]
    heaps[0] = [(0, [])]

    for current in xrange(sink):
        for child in adj[current]:
            for length, path in heaps[current]:
                new_path = list(path)
                new_path.append(current)
                # this can be done better using this heapreplace
                ew = edge_weight[0, num[(current, child)]]
                heapq.heappush(heaps[child], (length + ew, new_path))
                heaps[child] = heapq.nlargest(k, heaps[child])
                # TODO what with equal lenght paths?
    # result: heaps[sink]
    return [(length, tuple(zip(nodes, nodes[1:] + [sink]))) for length, nodes in heaps[sink]]
TransE.py 文件源码 项目:MTransE 作者: muhaochen 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def kNN_relation(self, vec, topk=10, method=0, self_vec_id=None):
        q = []
        for i in range(len(self.vec_r)):
            #skip self
            if self_vec_id != None and i == self_vec_id:
                continue
            if method == 1:
                dist = SP.distance.cosine(vec, self.vec_r[i])
            else:
                dist = LA.norm(vec - self.vec_r[i])
            if len(q) < topk:
                HP.heappush(q, self.index_dist(i, dist))
            else:
                #indeed it fetches the biggest
                tmp = HP.nsmallest(1, q)[0]
                if tmp.dist > dist:
                    HP.heapreplace(q, self.index_dist(i, dist) )
        rst = []
        while len(q) > 0:
            item = HP.heappop(q)
            rst.insert(0, (self.vocab_r[self.vec2r[item.index]], item.dist))
        return rst

    #given relation name, find kNN
heaps_running_median.py 文件源码 项目:technical-interviews 作者: darvid7 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def add_number_to_heap(num):
    """Adds a number to a heap, assuming the heaps correctly represent the lower half of numbers and the upper half.
    So the only factor taken into account is the number of items in the heaps.
    If same number of items add to lower half, else add to half with the least number of items.
    """
    if len(lower_half_max_heap) == 0:
        heapq.heappush(lower_half_max_heap, num * -1)
    elif len(upper_half_min_heap) == 0:
        heapq.heappush(upper_half_min_heap, num)
    else:
        # Assume the heap is a valid split of the data.
        # Difference will be positive if upper_half_min_heap has more elements, else negative.
        difference = len(upper_half_min_heap) - len(lower_half_max_heap)
        if difference >= 1:
            # upper_half_min_heap has more elements, should put this next number in lower_half_max_heap.
            heapq.heappush(lower_half_max_heap, num * -1)
        elif difference <= -1:
            # lower_half_max_heap has more elements, should put this next number in upper_half_min_heap.
            heapq.heappush(upper_half_min_heap, num)
        else:
            # Can push to either, difference is 0.
            heapq.heappush(lower_half_max_heap, num * -1)
heaps_running_median.py 文件源码 项目:technical-interviews 作者: darvid7 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def rebalance_heaps():
    """Ensures that no element in the upper half is less than any element in the lower half."""
    if not (len(lower_half_max_heap) >= 1 and len(upper_half_min_heap) >= 1):
        return  # Don't need to rebalance if one of them is empty.

    max_from_lower_half = lower_half_max_heap[0] * -1
    min_from_upper_half = upper_half_min_heap[0]

    if min_from_upper_half < max_from_lower_half:
        # Upper half has smaller elements than that of lower half.
        while min_from_upper_half < max_from_lower_half:
            # Swap elements.
            max_from_lower_half = heapq.heappop(lower_half_max_heap) * -1
            min_from_upper_half = heapq.heappop(upper_half_min_heap)
            heapq.heappush(lower_half_max_heap, min_from_upper_half * -1)
            heapq.heappush(upper_half_min_heap, max_from_lower_half)
            # heapq will handle restructuring heap so smallest values will be at index 0.
            max_from_lower_half = lower_half_max_heap[0] * -1
            min_from_upper_half = upper_half_min_heap[0]
dijkstra.py 文件源码 项目:technical-interviews 作者: darvid7 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def dijkstra(graph, source):
    pq = []
    nodes = graph.get_all_vertices()
    distances = [math.inf] * len(nodes)
    path = [-1] * len(nodes)
    distances[source.index] = 0
    for node in nodes:
        # Store as (priority, task) tuples, heapq will sort on first element.
        heapq.heappush(pq, (distances[node.index], node))
    while pq:
        # Assumes non negative weights, so when popping a node it is the best way to get there.
        dist, node = heapq.heappop(pq)
        for edge in graph.get_adjacent_edges(node):
            # Note: can't terminate early and do this.
            # Eg: (s) -3-> (c) -12-> (d)
            #      \-20->(d) will be wrong
            # if distances[edge.destination.index] != math.inf:  # We already have the shortest path to this node.
            #     continue
            if relax(node, edge.destination, edge, distances):
                # Found a better way to get to a next node, add that to the pq and set the parent.
                heapq.heappush(pq, (distances[edge.destination.index], edge.destination))
                path[edge.destination.index] = node.index
    return distances, path  # Shortest path from source to any other node in distances.
6.py 文件源码 项目:algorithm_course 作者: hrwhisper 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def dijkstra(s, t, g):
    q = []
    dis = collections.defaultdict(lambda: 0x7fffffff)  # [0x7fffffff] * len(g)
    vis = collections.defaultdict(bool)  # [False] * len(g)
    dis[s] = 0
    heapq.heappush(q, Node(s, 0))

    while q:
        cur = heapq.heappop(q).to
        if vis[cur]: continue
        vis[cur] = True
        for to, val in g[cur]:
            if not vis[to] and dis[cur] + val < dis[to]:
                dis[to] = dis[cur] + val
                heapq.heappush(q, Node(to, dis[to]))
    return dis
the-skyline-problem.py 文件源码 项目:lc-all-solutions 作者: csujedihy 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def getSkyline(self, buildings):
        """
        :type buildings: List[List[int]]
        :rtype: List[List[int]]
        """
        hs = []
        heap = []
        for b in buildings:
            hs.append((b[0], -b[2]))
            hs.append((b[1], b[2]))
        hs.sort()
        ans = []
        pre = cur = None
        for h in hs:
            pos = h[0]
            height = h[1]
            if height < 0:
                heapq.heappush(heap, height)
            else:
                i = heap.index(-height)
                heap[i] = heap[-1]
                heap.pop()
                if i < len(heap):
                    heapq._siftup(heap, i)
                    heapq._siftdown(heap, 0, i)
            if heap:
                cur = heap[0]
                if cur != pre:
                    ans.append((pos, -1 * cur))
                    pre = cur
            else:
                ans.append((pos, 0))

        return ans
find-median-from-data-stream.py 文件源码 项目:lc-all-solutions 作者: csujedihy 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def addNum(self, num):
        """
        Adds a num into the data structure.
        :type num: int
        :rtype: void
        """
        left = self.left
        right = self.right
        if self.median is None:
            self.median = num
            return

        if num <= self.median:
            heapq.heappush(left, -num)
        else:
            heapq.heappush(right, num)

        if len(left) > len(right) + 1:
            top = -heapq.heappop(left)
            heapq.heappush(right, self.median)
            self.median = top
        if len(right) > len(left) + 1:
            top = heapq.heappop(right)
            heapq.heappush(left, -self.median)
            self.median = top
design-twitter.py 文件源码 项目:lc-all-solutions 作者: csujedihy 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def getNewsFeed(self, userId):
        """
        Retrieve the 10 most recent tweet ids in the user's news feed. Each item in the news feed must be posted by users who the user followed or by the user herself. Tweets must be ordered from most recent to least recent.
        :type userId: int
        :rtype: List[int]
        """
        ret = []
        heap = []
        if self.tweets[userId]:
            heapq.heappush(heap, self.tweets[userId][-1])

        for followeeId in self.friendship[userId]:
            if self.tweets[followeeId]:
                heapq.heappush(heap, self.tweets[followeeId][-1])
        cnt = 10
        while heap and cnt > 0:
            _, tid, uid, idx = heapq.heappop(heap)
            ret.append(tid)
            if idx > 0:
                heapq.heappush(heap, self.tweets[uid][idx - 1])
            cnt -= 1
        return ret
kth-smallest-element-in-a-sorted-matrix.py 文件源码 项目:lc-all-solutions 作者: csujedihy 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def kthSmallest(self, matrix, k):
        """
        :type matrix: List[List[int]]
        :type k: int
        :rtype: int
        """
        visited = {(0, 0)}
        heap = [(matrix[0][0], (0, 0))]

        while heap:
            val, (i, j) = heapq.heappop(heap)
            k -= 1
            if k == 0:
                return val
            if i + 1 < len(matrix) and (i + 1, j) not in visited:
                heapq.heappush(heap, (matrix[i + 1][j], (i + 1, j)))
                visited.add((i + 1, j))
            if j + 1 < len(matrix) and (i, j + 1) not in visited:
                heapq.heappush(heap, (matrix[i][j + 1], (i, j + 1)))
                visited.add((i, j + 1))
super-ugly-number.py 文件源码 项目:lc-all-solutions 作者: csujedihy 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def nthSuperUglyNumber(self, n, primes):
        """
        :type n: int
        :type primes: List[int]
        :rtype: int
        """
        dp = [0] * (n + 1)
        dp[1] = 1
        heap = []
        indexes = [1] * len(primes)
        for i in xrange(0, len(primes)):
            heapq.heappush(heap, (dp[indexes[i]] * primes[i],i))

        for i in xrange(2, n + 1):
            minV = heap[0][0]
            dp[i] = minV
            while heap[0][0] == minV:
                value, xi = heapq.heappop(heap)
                indexes[xi] += 1
                heapq.heappush(heap, (dp[indexes[xi]] * primes[xi], xi))
        return dp[-1]
heap_usage.py 文件源码 项目:base_function 作者: Rockyzsu 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def basic_usage():
    h=[]
    heapq.heappush(h,10)
    print h
    heapq.heappush(h,1)
    print h
    heapq.heappush(h,0)
    print h
    heapq.heappush(h,3)
    print h
    heapq.heappush(h,6)
    print h
    heapq.heappush(h,7)
    print h
    heapq.heappush(h,11)
    print h
    heapq.heappush(h,9)
    print h
    heapq.heappush(h,7)
    print h
    heapq.heappush(h,2)
    print h
    p=heapq.heappop(h)
    print h
    print p
maps.py 文件源码 项目:Qaf 作者: jonathanabennett 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def heatmap(self, source_x,source_y):
        log.debug("Updating Heatmap.")
        for tile in self.grid.values():
            tile.value = sys.maxsize
            tile.previous = None
            tile.visited = False
        l_open = []
        source = self.lookup(source_x,source_y)
        if source: l_open.append((0,source,source)) #(value,cell,previous)

        while l_open:
            value,cell,previous = heapq.heappop(l_open)
            if cell.visited: continue
            cell.visited = True
            cell.previous = previous
            cell.value = value
            for x,y in self.get_neighbor_addrs(cell.x,cell.y):
                c = self.lookup(x,y)
                if c and not (c.visited or c.blocked):
                    heapq.heappush(l_open, (value+1, c, cell))

        return self.render(0,self.width, 0,self.height,heatp=True)
median_integer_stream.py 文件源码 项目:g4gproblems 作者: prathamtandon 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def median_stream_ints(arr):

    less_than_med = []
    greater_than_med = []

    for i in range(len(arr)):
        print 'Median after adding:', arr[i]
        if len(less_than_med) == 0 and len(greater_than_med) == 0:
            heapq.heappush(less_than_med, -arr[i])  # max-heap in Python implemented by negation.
        elif arr[i] < abs(less_than_med[0]):
            heapq.heappush(less_than_med, -arr[i])
            if len(less_than_med) - len(greater_than_med) > 1:
                root = abs(heapq.heappop(less_than_med))
                heapq.heappush(greater_than_med, root)
        elif len(greater_than_med) == 0 or arr[i] > greater_than_med[0]:
            heapq.heappush(greater_than_med, arr[i])
            if len(greater_than_med) - len(less_than_med) > 1:
                root = heapq.heappop(greater_than_med)
                heapq.heappush(less_than_med, -root)
        if len(less_than_med) == len(greater_than_med):
            print (greater_than_med[0] - less_than_med[0]) / 2
        else:
            print abs(less_than_med[0]) if len(less_than_med) > len(greater_than_med) else greater_than_med[0]
generate.py 文件源码 项目:DrQA 作者: facebookresearch 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def search_docs(inputs, max_ex=5, opts=None):
    """Given a set of document ids (returned by ranking for a question), search
    for top N best matching (by heuristic) paragraphs that contain the answer.
    """
    if not opts:
        raise RuntimeError('Options dict must be supplied.')

    doc_ids, q_tokens, answer = inputs
    examples = []
    for i, doc_id in enumerate(doc_ids):
        for j, paragraph in enumerate(re.split(r'\n+', fetch_text(doc_id))):
            found = find_answer(paragraph, q_tokens, answer, opts)
            if found:
                # Reverse ranking, giving priority to early docs + paragraphs
                score = (found[0], -i, -j, random.random())
                if len(examples) < max_ex:
                    heapq.heappush(examples, (score, found[1]))
                else:
                    heapq.heappushpop(examples, (score, found[1]))
    return [e[1] for e in examples]
__init__.py 文件源码 项目:Flask-WhooshAlchemy3 作者: blakev 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __iter__(self):
        """ Sort the results by Whoosh rank; relevance. """
        _iter = super(QueryProxy, self).__iter__()

        if self._whoosh_results is None or self._order_by is not False:
            return _iter

        ordered = []

        for row in _iter:
            # we have to convert the primary-key, as stored in the SQL database
            #  into a string because the key is stored as an `ID` in whoosh.
            #  The ID field is string only; plus, this allows for uuid pk's.
            str_pk = str(getattr(row, self._pk))
            heapq.heappush(
                ordered, (self._whoosh_results[str_pk], row))

        def inner():
            while ordered:
                yield heapq.heappop(ordered)[1]
        return inner()
precluster.py 文件源码 项目:texta 作者: texta-tk 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _create_clusterings(self,dendrogram):
        clusterings = [[(-(dendrogram.distance),dendrogram)]]

        for threshold in np.linspace(-self._max_dist,-self._min_dist,self.number_of_steps)[1:]:
            new_clustering = clusterings[-1][:] # set new clustering to be equivalent to previous
            # Expand previous clustering
            while new_clustering[0][0] < threshold and new_clustering[0][1].is_cluster():
                expanded_cluster = heapq.heappop(new_clustering)[1]
                left = expanded_cluster.left
                right = expanded_cluster.right

                if left.is_cluster():
                    heapq.heappush(new_clustering,(-left.distance,left))
                else:
                    heapq.heappush(new_clustering,(-(self._min_dist-1),left))

                if right.is_cluster():
                    heapq.heappush(new_clustering,(-right.distance,right))
                else:
                    heapq.heappush(new_clustering,(-(self._min_dist-1),right))      

            clusterings.append(new_clustering)

        return clusterings
313. Super Ugly Number.py 文件源码 项目:Leetcode 作者: 95subodh 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def nthSuperUglyNumber(self, n, primes):
        """
        :type n: int
        :type primes: List[int]
        :rtype: int
        """
        uglies, idx, heap, ugly_set = [0] * n, [0] * len(primes), [], set([1])
        uglies[0] = 1

        for k, p in enumerate(primes):
            heapq.heappush(heap, (p, k))
            ugly_set.add(p)

        for i in xrange(1, n):
            uglies[i], k = heapq.heappop(heap)
            while (primes[k] * uglies[idx[k]]) in ugly_set:
                idx[k] += 1
            heapq.heappush(heap, (primes[k] * uglies[idx[k]], k))
            ugly_set.add(primes[k] * uglies[idx[k]])

        return uglies[-1]
264. Ugly Number II.py 文件源码 项目:Leetcode 作者: 95subodh 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def nthUglyNumber(self, n):
        """
        :type n: int
        :rtype: int
        """
        l=[1]
        primes=[2,3,5]
        heapq.heapify(l)
        set1=set(l)
        n-=1
        while n>0:
            z=heapq.heappop(l)
            n-=1
            for i in primes:
                if z*i not in set1:
                    heapq.heappush(l, z*i)
                    set1.add(z*i)
        return heapq.heappop(l)
skyline.py 文件源码 项目:algorithms 作者: keon 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_skyline(LRH):
    """
    Wortst Time Complexity: O(NlogN)
    :type buildings: List[List[int]]
    :rtype: List[List[int]]
    """
    skyline, live = [], []
    i, n = 0, len(LRH)
    while i < n or live:
        if not live or i < n and LRH[i][0] <= -live[0][1]:
            x = LRH[i][0]
            while i < n and LRH[i][0] == x:
                heapq.heappush(live, (-LRH[i][2], -LRH[i][1]))
                i += 1
        else:
            x = -live[0][1]
            while live and -live[0][1] <= x:
                heapq.heappop(live)
        height = len(live) and -live[0][0]
        if not skyline or height != skyline[-1][1]:
            skyline += [x, height],
    return skyline
__main__.py 文件源码 项目:biglambda_hadoop 作者: henry8527 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def explore_frontier(sig, data_type, metric, max_size):
    # closure for binding sig and rules easily
    expand = producers.generate_expander(sig)
    # generate appropriate starting node based on type
    start_node = producers.e.Un(producers.parse_type(data_type))
    frontier = [(metric(start_node), start_node)]
    # go hog wild
    while True:
        # pull expression off heap, check expansions
        m, expr = heapq.heappop(frontier)
        expansions = expand(expr)
        # if there are expansions, just add them back in
        if expansions:
            for new_expr in expansions:
                heapq.heappush(frontier, (metric(new_expr), new_expr) )
        # if there aren't any expansions and the program is closed, we're done
        elif len(expr._values_from_kind("un")) == 0:
            yield m[0], expr

#------------------------------------------------------------------------------
# now we treat this module as a script - time to execute!
#------------------------------------------------------------------------------
parser.py 文件源码 项目:iscnlp 作者: iscnlp 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def create_beam_items(self, beam):
        beam_items = []
        for b in xrange(len(beam)):
            config = beam[b]
            prevScore = config.score
            dense_feats = self.template.feat_template(config.nodes,
                                                      config.stack,
                                                      config.b0)
            pr_scores = self.clf.predict_proba(dense_feats)[0]
            pr_scores = np.log(pr_scores)
            predictions = zip(pr_scores, self.clf.classes_)
            valid_trans = self.get_valid_transitions(config)
            for score, (action, label) in predictions:
                if self.transitions[action] in valid_trans:
                    next_transition = valid_trans[self.transitions[action]]
                    heapq.heappush(
                        beam_items,
                        (prevScore + score, b, next_transition, label))
                    if len(beam_items) > self.beamwidth:
                        heapq.heappop(beam_items)
        return beam_items
prm.py 文件源码 项目:SamplingBasedPlanning 作者: ryanfarr01 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def find_k_nearest(self, k, s_query):
        '''
        Gets KNN using heap sort
        '''
        neighbors = []
        for n in self.nodes:
            dist = np.linalg.norm(s_query - n.state)
            if dist > 0:
                hn = HeapNode(n, dist)
                heapq.heappush(neighbors, hn)

        #Check if we have <= k to choose from
        #in which case, simply return that list
        ret_list = []
        if len(neighbors) <= k:
            for k in neighbors:
                ret_list.append(k.node)
            return ret_list

        #get the k nearest neighbors
        for i in xrange(k):
            t = heapq.heappop(neighbors)
            ret_list.append(t.node)

        return ret_list
gc.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def largest_export_versions(n):
  """Creates a filter that keeps the largest n export versions.

  Args:
    n: number of versions to keep.

  Returns:
    A filter function that keeps the n largest paths.
  """
  def keep(paths):
    heap = []
    for idx, path in enumerate(paths):
      if path.export_version is not None:
        heapq.heappush(heap, (path.export_version, idx))
    keepers = [paths[i] for _, i in heapq.nlargest(n, heap)]
    return sorted(keepers)

  return keep


问题


面经


文章

微信
公众号

扫码关注公众号