def main():
parser = argparse.ArgumentParser(description="""
python add_attr_to_hdf5.py file.hdf5 attr_name attr_value
Add an attribute to an HDF5 file.
""")
parser.add_argument('filepath')
parser.add_argument('attr_name')
parser.add_argument('attr_value')
#parser.add_argument('-o', '--options', default='yo',
# help="Some option", type='str')
#parser.add_argument('-u', '--useless', action='store_true',
# help='Another useless option')
args = parser.parse_args()
with h5py.File(args.filepath) as f:
f.attrs[args.attr_name] = args.attr_value
python类File()的实例源码
def dump(self, target):
"""Serializes MPArray to :code:`h5py.Group`. Recover using
:func:`~load`.
:param target: :code:`h5py.Group` the instance should be saved to or
path to h5 file (it's then serialized to /)
"""
if isinstance(target, str):
import h5py
with h5py.File(target, 'w') as outfile:
return self.dump(outfile)
for prop in ('ranks', 'shape'):
# these are only saved for convenience
target.attrs[prop] = str(getattr(self, prop))
# these are actually used in MPArray.load
target.attrs['len'] = len(self)
target.attrs['canonical_form'] = self.canonical_form
for site, lten in enumerate(self._lt):
target[str(site)] = lten
def test_dump_and_load(tmpdir, dtype):
mpa = factory.random_mpa(5, [(4,), (2, 3), (1,), (4,), (4, 3)],
(4, 7, 1, 3), dtype=dtype)
mpa.canonicalize(left=1, right=3)
with h5.File(str(tmpdir / 'dump_load_test.h5'), 'w') as buf:
newgroup = buf.create_group('mpa')
mpa.dump(newgroup)
with h5.File(str(tmpdir / 'dump_load_test.h5'), 'r') as buf:
mpa_loaded = mp.MPArray.load(buf['mpa'])
assert_mpa_identical(mpa, mpa_loaded)
mpa.dump(str(tmpdir / 'dump_load_test_str.h5'))
mpa_loaded = mp.MPArray.load(str(tmpdir / 'dump_load_test_str.h5'))
assert_mpa_identical(mpa, mpa_loaded)
###############################################################################
# Algebraic operations #
###############################################################################
def average_models(best, L=6, model_dir='', model_name='ra.h5'):
print '... merging'
print '{} {:d}-{:d}'.format(model_dir, best-L/2, best+L/2)
params = {}
side_info = {}
attrs = {}
for i in xrange(max(best-L/2, 0), best+L/2):
with h5py.File(osp.join(model_dir, model_name+'.'+str(i)), 'r') as f:
for k, v in f.attrs.items():
attrs[k] = v
for p in f.keys():
if '#' not in p:
side_info[p] = f[p][...]
elif p in params:
params[p] += np.array(f[p]).astype('float32') / L
else:
params[p] = np.array(f[p]).astype('float32') / L
with h5py.File(osp.join(model_dir, model_name+'.merge'), 'w') as f:
for p in params.keys():
f[p] = params[p]
for s in side_info.keys():
f[s] = side_info[s]
for k, v in attrs.items():
f.attrs[k] = v
def save_h5(filename, **kwargs):
'''Save data to an hdf5 file.
Parameters
----------
filename : str
Path to the file
kwargs
key-value pairs of data
See Also
--------
load_h5
'''
with h5py.File(filename, 'w') as hf:
hf.update(kwargs)
def save_as_hdf5_acc(g, outHDF5):
NumAcc = len(g.accessions)
log.info("Writing into HDF5 file acc wise")
h5file = h5py.File(outHDF5, 'w')
NumSNPs = len(g.snps)
h5file.create_dataset('accessions', data=g.accessions, shape=(NumAcc,))
h5file.create_dataset('positions', data=g.positions, shape=(NumSNPs,),dtype='i4')
h5file['positions'].attrs['chrs'] = g.chrs
h5file['positions'].attrs['chr_regions'] = g.chr_regions
h5file.create_dataset('snps', shape=(NumSNPs, NumAcc), dtype='int8', compression="gzip", chunks=((NumSNPs, 1)))
for i in range(NumAcc):
h5file['snps'][:,i] = np.array(g.snps)[:,i]
if i+1 % 10 == 0:
log.info("written SNP info for %s accessions", i+1)
h5file['snps'].attrs['data_format'] = g.data_format
h5file['snps'].attrs['num_snps'] = NumSNPs
h5file['snps'].attrs['num_accessions'] = NumAcc
h5file.close()
def get_1000G_snps(sumstats, out_file):
sf = np.loadtxt(sumstats,dtype=str,skiprows=1)
h5f = h5py.File('ref/Misc/1000G_SNP_info.h5','r')
rf = h5f['snp_chr'][:]
h5f.close()
ind1 = np.in1d(sf[:,1],rf[:,2])
ind2 = np.in1d(rf[:,2],sf[:,1])
sf1 = sf[ind1]
rf1 = rf[ind2]
### check order ###
if sum(sf1[:,1]==rf1[:,2])==len(rf1[:,2]):
print 'Good!'
else:
print 'Shit happens, sorting sf1 to have the same order as rf1'
O1 = np.argsort(sf1[:,1])
O2 = np.argsort(rf1[:,2])
O3 = np.argsort(O2)
sf1 = sf1[O1][O3]
out = ['hg19chrc snpid a1 a2 bp or p'+'\n']
for i in range(len(sf1[:,1])):
out.append(sf1[:,0][i]+' '+sf1[:,1][i]+' '+sf1[:,2][i]+' '+sf1[:,3][i]+' '+rf1[:,1][i]+' '+sf1[:,5][i]+' '+sf1[:,6][i]+'\n')
ff = open(out_file,"w")
ff.writelines(out)
ff.close()
def load_weights(params, path, num_conv):
print 'Loading gan weights from ' + path
with h5py.File(path, 'r') as hdf5:
params['skipthought2image'] = theano.shared(np.copy(hdf5['skipthought2image']))
params['skipthought2image-bias'] = theano.shared(np.copy(hdf5['skipthought2image-bias']))
for i in xrange(num_conv):
params['W_conv{}'.format(i)] = theano.shared(np.copy(hdf5['W_conv{}'.format(i)]))
params['b_conv{}'.format(i)] = theano.shared(np.copy(hdf5['b_conv{}'.format(i)]))
# Flip w,h axes
params['W_conv{}'.format(i)] = params['W_conv{}'.format(i)][:,:,::-1,::-1]
w = np.abs(np.copy(hdf5['W_conv{}'.format(i)]))
print 'W_conv{}'.format(i), np.min(w), np.mean(w), np.max(w)
b = np.abs(np.copy(hdf5['b_conv{}'.format(i)]))
print 'b_conv{}'.format(i), np.min(b), np.mean(b), np.max(b)
return params
def _load_sentences_embeddings(self):
# load the test sentences and the expected LM embeddings
with open(os.path.join(FIXTURES, 'sentences.json')) as fin:
sentences = json.load(fin)
# the expected embeddings
expected_lm_embeddings = []
for k in range(len(sentences)):
embed_fname = os.path.join(
FIXTURES, 'lm_embeddings_{}.hdf5'.format(k)
)
expected_lm_embeddings.append([])
with h5py.File(embed_fname, 'r') as fin:
for i in range(10):
sent_embeds = fin['%s' % i][...]
sent_embeds_concat = numpy.concatenate(
(sent_embeds[0, :, :], sent_embeds[1, :, :]),
axis=-1
)
expected_lm_embeddings[-1].append(sent_embeds_concat)
return sentences, expected_lm_embeddings
def test_read_hdf5_format_file(self):
vocab = Vocabulary()
vocab.add_token_to_namespace("word")
vocab.add_token_to_namespace("word2")
embeddings_filename = self.TEST_DIR + "embeddings.hdf5"
embeddings = numpy.random.rand(vocab.get_vocab_size(), 5)
with h5py.File(embeddings_filename, 'w') as fout:
_ = fout.create_dataset(
'embedding', embeddings.shape, dtype='float32', data=embeddings
)
params = Params({
'pretrained_file': embeddings_filename,
'embedding_dim': 5,
})
embedding_layer = Embedding.from_params(vocab, params)
assert numpy.allclose(embedding_layer.weight.data.numpy(), embeddings)
def test_read_hdf5_raises_on_invalid_shape(self):
vocab = Vocabulary()
vocab.add_token_to_namespace("word")
embeddings_filename = self.TEST_DIR + "embeddings.hdf5"
embeddings = numpy.random.rand(vocab.get_vocab_size(), 10)
with h5py.File(embeddings_filename, 'w') as fout:
_ = fout.create_dataset(
'embedding', embeddings.shape, dtype='float32', data=embeddings
)
params = Params({
'pretrained_file': embeddings_filename,
'embedding_dim': 5,
})
with pytest.raises(ConfigurationError):
_ = Embedding.from_params(vocab, params)
def _read_pretrained_hdf5_format_embedding_file(embeddings_filename: str, # pylint: disable=invalid-name
embedding_dim: int,
vocab: Vocabulary,
namespace: str = "tokens") -> torch.FloatTensor:
"""
Reads from a hdf5 formatted file. The embedding matrix is assumed to
be keyed by 'embedding' and of size ``(num_tokens, embedding_dim)``.
"""
with h5py.File(embeddings_filename, 'r') as fin:
embeddings = fin['embedding'][...]
if list(embeddings.shape) != [vocab.get_vocab_size(namespace), embedding_dim]:
raise ConfigurationError(
"Read shape {0} embeddings from the file, but expected {1}".format(
list(embeddings.shape), [vocab.get_vocab_size(namespace), embedding_dim]))
return torch.FloatTensor(embeddings)
def load_grid8(return_imsize=True):
"""Load grid 8x8.
Parameters
----------
return_imsize : bool
return a tuple with grid size if True
Returns
-------
db : h5py.File
a HDF5 file object
imsize : tuple
(optional) grid size
"""
file_path = os.path.join(rlvision.RLVISION_DATA,
"HDF5", "gridworld_8.hdf5")
if not os.path.isfile(file_path):
raise ValueError("The dataset %s is not existed!" % (file_path))
if return_imsize is True:
return h5py.File(file_path, mode="r"), (8, 8)
else:
return h5py.File(file_path, mode="r")
def encoder(args, model):
latent_dim = args.latent_dim
data, charset = load_dataset(args.data, split = False)
if os.path.isfile(args.model):
model.load(charset, args.model, latent_rep_size = latent_dim)
else:
raise ValueError("Model file %s doesn't exist" % args.model)
x_latent = model.encoder.predict(data)
if args.save_h5:
h5f = h5py.File(args.save_h5, 'w')
h5f.create_dataset('charset', data = charset)
h5f.create_dataset('latent_vectors', data = x_latent)
h5f.close()
else:
np.savetxt(sys.stdout, x_latent, delimiter = '\t')
def main():
args = get_arguments()
model = MoleculeVAE()
data, data_test, charset = load_dataset(args.data)
if os.path.isfile(args.model):
model.load(charset, args.model, latent_rep_size = args.latent_dim)
else:
raise ValueError("Model file %s doesn't exist" % args.model)
x_latent = model.encoder.predict(data)
if not args.visualize:
if not args.save_h5:
np.savetxt(sys.stdout, x_latent, delimiter = '\t')
else:
h5f = h5py.File(args.save_h5, 'w')
h5f.create_dataset('charset', data = charset)
h5f.create_dataset('latent_vectors', data = x_latent)
h5f.close()
else:
visualize_latent_rep(args, model, x_latent)
def fetch_data_one(self,dataitem,cycle):
self.h5 = mrT.File(self.filename,'r')
try:
data = self.h5[self.cycle_header+str(cycle)]['SE_DATASET'][dataitem]
except ValueError:
try:
data = self.h5[self.cycle_header+str(cycle)].attrs.get(dataitem, None)
except TypeError:
data = self.h5[self.cycle_header+str(cycle)][dataitem]
try:
while data.shape[0] < 2:
data = data[0]
except (IndexError, AttributeError):
None
self.h5.close()
return data
def fromh5(path, datapath=None, dataslice=None, asnumpy=True, preptrain=None):
"""
Opens a hdf5 file at path, loads in the dataset at datapath, and returns dataset
as a numpy array.
"""
# Check if path exists (thanks Lukas!)
assert os.path.exists(path), "Path {} does not exist.".format(path)
# Init file
h5file = h5.File(path)
# Init dataset
h5dataset = h5file[datapath] if datapath is not None else h5file.values()[0]
# Slice dataset
h5dataset = h5dataset[dataslice] if dataslice is not None else h5dataset
# Convert to numpy if required
h5dataset = np.asarray(h5dataset) if asnumpy else h5dataset
# Apply preptrain
h5dataset = preptrain(h5dataset) if preptrain is not None else h5dataset
# Close file
h5file.close()
# Return
return h5dataset
def __check_valid_key__(self, key):
file = h5py.File(self.file_name)
all_fields = []
file.visit(all_fields.append)
if not key in all_fields:
print_and_log(['The key %s can not be found in the dataset! Keys found are:' %key,
", ".join(all_fields)], 'error', logger)
sys.exit(1)
file.close()
def _open(self, mode='r'):
if mode in ['r+', 'w'] and self._parallel_write:
self.my_file = h5py.File(self.file_name, mode=mode, driver='mpio', comm=comm)
else:
self.my_file = h5py.File(self.file_name, mode=mode)
self.data = self.my_file.get(self.h5_key)
def set_streams(self, stream_mode):
if stream_mode == 'single-file':
sources = []
to_write = []
count = 0
params = self.get_description()
my_file = h5py.File(self.file_name)
all_matches = [re.findall('\d+', u) for u in my_file.keys()]
all_streams = []
for m in all_matches:
if len(m) > 0:
all_streams += [int(m[0])]
idx = numpy.argsort(all_streams)
for i in xrange(len(all_streams)):
params['h5_key'] = my_file.keys()[idx[i]]
new_data = type(self)(self.file_name, params)
sources += [new_data]
to_write += ['We found the datafile %s with t_start %d and duration %d' %(new_data.file_name, new_data.t_start, new_data.duration)]
print_and_log(to_write, 'debug', logger)
return sources
elif stream_mode == 'multi-files':
return H5File.set_streams(stream_mode)