python类File()的实例源码

hdf5.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def allocate(self, shape, data_dtype=None):

        if data_dtype is None:
            data_dtype = self.data_dtype

        if self._parallel_write:
            self.my_file = h5py.File(self.file_name, mode='w', driver='mpio', comm=comm)
            self.my_file.create_dataset(self.h5_key, dtype=data_dtype, shape=shape)
        else:
            self.my_file = h5py.File(self.file_name, mode='w')
            if self.is_master:
                if self.compression != '':
                    self.my_file.create_dataset(self.h5_key, dtype=data_dtype, shape=shape, compression=self.compression, chunks=True)
                else:
                    self.my_file.create_dataset(self.h5_key, dtype=data_dtype, shape=shape, chunks=True)

        self.my_file.close()
        self._read_from_header()
utils.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_patch_for_similarities(params, extension):

    file_out_suff  = params.get('data', 'file_out_suff')
    template_file  = file_out_suff + '.templates%s.hdf5' %extension
    if os.path.exists(template_file):
        try:
            myfile = h5py.File(template_file, 'r', libver='latest')
            version = myfile.get('version')[0].decode('ascii')
            myfile.close()
        except Exception:
            version = None
    else:
        raise Exception('No templates found! Check suffix?')

    if version is not None:
        if (StrictVersion(version) >= StrictVersion('0.6.0')):
            return True
    else:
        print_and_log(["Version is below 0.6.0"], 'debug', logger)
        return False
test_validating.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_validating(self):
        #mpi_launch('fitting', self.file_name, 2, 0, 'False')


        a, b            = os.path.splitext(os.path.basename(self.file_name))
        file_name, ext  = os.path.splitext(self.file_name)
        file_out        = os.path.join(os.path.abspath(file_name), a)
        result_name     = os.path.join(file_name, 'injected')
        spikes          = {}
        result          = h5py.File(os.path.join(result_name, '%s.result.hdf5' %a))
        for key in result.get('spiketimes').keys():
            spikes[key] = result.get('spiketimes/%s' %key)[:]

        juxta_file = file_out + '.juxta.dat'

        f = numpy.memmap(juxta_file, shape=(self.length,1), dtype=self.parser.get('validating', 'juxta_dtype'), mode='w+')
        f[spikes['temp_9']] = 100
        del f

        mpi_launch('validating', self.file_name, 2, 0, 'False')
matrix.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def report(self, summary_json_paths, barcode_summary_h5_path, recovered_cells, cell_bc_seqs):
        assert len(cell_bc_seqs) == len(self.matrices)

        barcode_summary_h5 = h5.File(barcode_summary_h5_path, 'r')

        d = {}

        d.update(self._report_genome_agnostic_metrics(
            summary_json_paths, barcode_summary_h5, recovered_cells, cell_bc_seqs))

        # Compute genome-specific metrics
        for i, (genome, matrix) in enumerate(self.matrices.iteritems()):
            for key, value in matrix.report(genome,
                                            barcode_summary_h5,
                                            recovered_cells,
                                            cell_bc_seqs=cell_bc_seqs[i],
                                        ).iteritems():
                key = '_'.join([genome, key])
                d[key] = value
        return d
hdf5.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def write_data_frame(fn, df):
    ''' Write the pandas dataframe object to an HDF5 file.  Each column is written as a single 1D dataset at the top
    level of the HDF5 file, using the native pandas datatype'''

    # Always write a fresh file -- the 'w' argument to h5py.File is supposed to truncate an existing file, but it doesn't appear to work correctly
    if os.path.exists(fn):
        os.remove(fn)

    f = h5py.File(fn, "w")

    # To preserve column order, write columns to an attribute
    column_names = np.array(list(df.columns))
    f.attrs.create("column_names", column_names)

    for col in df.columns:
        write_data_column(f, df[col])

    f.close()
hdf5.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def read_data_frame(fn, query_cols=[]):
    ''' Load a pandas DataFrame from an HDF5 file. If a column list is specified, only load the matching columns '''

    with h5py.File(fn, 'r') as f:

        column_names = f.attrs.get("column_names")
        column_names = get_column_intersection(column_names, query_cols)

        df = p.DataFrame()

        # Add the columns progressively to save memory
        for name in column_names:
            ds = f[name]
            if has_levels(ds):
                indices = ds[:]
                uniques = get_levels(ds)
                # This method of constructing of Categorical avoids copying the indices array
                # which saves memory for big datasets
                df[name] = p.Categorical(indices, categories=uniques, ordered=False, fastpath=True)
            else:
                df[name] = p.Series(ds[:])

        return df
hdf5.py 文件源码 项目:cellranger 作者: 10XGenomics 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def read_data_frame_indexed_no_concat(fn, tabix_queries, query_cols = [], coords = True):
    ''' Read rows from the HDF5 data frame that match each tabix query in the
    queries list.  A tabix query is in the form ('chr1', 100, 200). query_cols
    is a list of columns you want to return. If coords is True, then it it will
    return coordinates regardless of query_cols. If coords is False, it will
    only return the columns specified in query_cols. Returns a list of pandas
    DataFrames, one for each query. '''

    f = h5py.File(fn, 'r')

    # read the index
    tabix_index = read_tabix_index(f)

    dfs = []
    for q in tabix_queries:
        r = _read_data_frame_indexed_sub(f, tabix_index, q, query_cols = query_cols, coords = coords)
        dfs.append(r)

    f.close()

    # Return the union of the queries
    return dfs
fast5_to_fastq.py 文件源码 项目:Fast5-to-Fastq 作者: rrwick 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def check_filters(fast5_file, min_length, min_mean_qual, min_qual_window, window_size):
    try:
        hdf5_file = h5py.File(fast5_file, 'r')
        names = get_hdf5_names(hdf5_file)
        basecall_location = get_best_fastq_hdf5_location(hdf5_file, names)
        if basecall_location:
            fastq_str = hdf5_file[basecall_location].value
            try:
                parts = fastq_str.split(b'\n')
                seq, quals = parts[1], parts[3]
            except IndexError:
                fastq_str, seq, quals = '', '', ''
            if not fastq_str or not seq:
                return False, 0
            if min_mean_qual and get_mean_qscore(quals) < min_mean_qual:
                return False, 0
            if min_length and len(seq) < min_length:
                return False, 0
            if min_qual_window and get_min_window_qscore(quals, window_size) < min_qual_window:
                return False, 0
            return True, len(seq)
    except (IOError, RuntimeError):
        pass
    return False, 0
fast5_to_fastq.py 文件源码 项目:Fast5-to-Fastq 作者: rrwick 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def min_window_qual_and_length(fast5_file, window_size):
    try:
        hdf5_file = h5py.File(fast5_file, 'r')
        names = get_hdf5_names(hdf5_file)
        basecall_location = get_best_fastq_hdf5_location(hdf5_file, names)
        if basecall_location:
            fastq_str = hdf5_file[basecall_location].value
            try:
                parts = fastq_str.split(b'\n')
                seq, quals = parts[1], parts[3]
                return get_min_window_qscore(quals, window_size), len(seq), fast5_file
            except IndexError:
                pass
    except (IOError, RuntimeError):
        pass
    return 0.0, 0, fast5_file
data_prep_util.py 文件源码 项目:pointnet 作者: charlesq34 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def save_h5_data_label_normal(h5_filename, data, label, normal, 
        data_dtype='float32', label_dtype='uint8', noral_dtype='float32'):
    h5_fout = h5py.File(h5_filename)
    h5_fout.create_dataset(
            'data', data=data,
            compression='gzip', compression_opts=4,
            dtype=data_dtype)
    h5_fout.create_dataset(
            'normal', data=normal,
            compression='gzip', compression_opts=4,
            dtype=normal_dtype)
    h5_fout.create_dataset(
            'label', data=label,
            compression='gzip', compression_opts=1,
            dtype=label_dtype)
    h5_fout.close()


# Write numpy array data and label to h5_filename
plot_quasar_scatter.py 文件源码 项目:genomedisco 作者: kundajelab 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def main():
    parser = generate_parser()
    args = parser.parse_args()
    infile1 = h5py.File(args.input1, 'r')
    infile2 = h5py.File(args.input2, 'r')
    resolutions = numpy.intersect1d(infile1['resolutions'][...], infile2['resolutions'][...])
    chroms = numpy.intersect1d(infile2['chromosomes'][...], infile2['chromosomes'][...])
    results = {}
    data1 = load_data(infile1, chroms, resolutions)
    data2 = load_data(infile2, chroms, resolutions)
    infile1.close()
    infile2.close()
    results = {}
    results[(args.input1.split('/')[-1].strip('.quasar'), args.input2.split('/')[-1].strip('.quasar'))] = correlate_samples(data1, data2)
    for resolution in data1.keys():
        for chromo in chroms:
            plt.scatter(data1[resolution][chromo][1].flatten(),data2[resolution][chromo][1].flatten(),alpha=0.1,color='red')
            plt.show()
            plt.savefig(args.output+'.res'+str(resolution)+'.chr'+chromo+'.pdf')
disco_random_walks.py 文件源码 项目:genomedisco 作者: kundajelab 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def fill_hdf5_with_sparse_by_chunk(mym1,mym2,fname,chunksize):
    start1=0
    end1=0
    n=mym1.shape[0]

    f=h5py.File(fname,'w')
    m1hdf5=f.create_dataset('m1',shape=(n,n),dtype='float')
    m2hdf5=f.create_dataset('m2',shape=(n,n),dtype='float')

    while end1<n:
        end1=np.min([n,(start1+chunksize)])
        print 'start1: '+str(start1)

        if (end1-start1)==1:
            m1hdf5[start1,:]=mym1[start1,:].toarray()
            m2hdf5[start1,:]=mym2[start1,:].toarray()
        else:
            m1hdf5[start1:end1,:]=mym1[start1:end1,:].toarray()
            m2hdf5[start1:end1,:]=mym2[start1:end1,:].toarray()
        start1=end1
    print 'sum of 1'
    print m1hdf5[:,:].sum()
    print m2hdf5[:,:].sum()
    f.close()
MetaArray.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def __init__(self, data=None, info=None, dtype=None, file=None, copy=False, **kwargs):
        object.__init__(self)
        #self._infoOwned = False
        self._isHDF = False

        if file is not None:
            self._data = None
            self.readFile(file, **kwargs)
            if kwargs.get("readAllData", True) and self._data is None:
                raise Exception("File read failed: %s" % file)
        else:
            self._info = info
            if (hasattr(data, 'implements') and data.implements('MetaArray')):
                self._info = data._info
                self._data = data.asarray()
            elif isinstance(data, tuple):  ## create empty array with specified shape
                self._data = np.empty(data, dtype=dtype)
            else:
                self._data = np.array(data, dtype=dtype, copy=copy)

        ## run sanity checks on info structure
        self.checkInfo()
MetaArray.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def transpose(self, *args):
        if len(args) == 1 and hasattr(args[0], '__iter__'):
            order = args[0]
        else:
            order = args

        order = [self._interpretAxis(ax) for ax in order]
        infoOrder = order  + list(range(len(order), len(self._info)))
        info = [self._info[i] for i in infoOrder]
        order = order + list(range(len(order), self.ndim))

        try:
            if self._isHDF:
                return MetaArray(np.array(self._data).transpose(order), info=info)
            else:
                return MetaArray(self._data.transpose(order), info=info)
        except:
            print(order)
            raise

    #### File I/O Routines
HDF5Exporter.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def export(self, fileName=None):
        if not HAVE_HDF5:
            raise RuntimeError("This exporter requires the h5py package, "
                               "but it was not importable.")

        if not isinstance(self.item, PlotItem):
            raise Exception("Must have a PlotItem selected for HDF5 export.")

        if fileName is None:
            self.fileSaveDialog(filter=["*.h5", "*.hdf", "*.hd5"])
            return
        dsname = self.params['Name']
        fd = h5py.File(fileName, 'a') # forces append to file... 'w' doesn't seem to "delete/overwrite"
        data = []

        appendAllX = self.params['columnMode'] == '(x,y) per plot'
        for i,c in enumerate(self.item.curves):
            d = c.getData()
            if appendAllX or i == 0:
                data.append(d[0])
            data.append(d[1])

        fdata = numpy.array(data).astype('double')
        dset = fd.create_dataset(dsname, data=fdata)
        fd.close()
spikedetection.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def __load_page_data(self):
        self.__clearRows()
        if hasattr(self,"selectChan"):
            with hp.File(self.file_name,"r") as f:
                sampling_rate = f["analogs"][self.selectChan]["sampling_rate"].value
                start_time = f["analogs"][self.selectChan]["start_time"].value
                start_point = sampling_rate*self.row_num*self.current_page
                end_point = sampling_rate*self.row_num*(self.current_page+1)
                self.page_data = f["analogs"][self.selectChan]["data"][start_point:end_point]
                self.sigma = np.median(np.abs(self.page_data)/0.6745)
                Thr = self.thresholds[self.selectChan] * self.sigma
            self.sampling_rate = sampling_rate
            self.row_wins_rois = [0]*self.row_num
            for i in range(self.row_num):
                start_point = i*sampling_rate
                end_point = (i+1)*sampling_rate
                if self.page_data[start_point:end_point].size:
                    ys = self.page_data[start_point:end_point]
                    xs = np.arange(ys.size)
                    line = MultiLine(np.array([xs]),np.array([ys]),"w")
                    self.row_wins[i].addItem(line)

                self.row_wins_rois[i] = pg.InfiniteLine(pos=Thr,angle=0,movable=False)
                self.row_wins_rois[i].setZValue(10)
                self.row_wins[i].addItem(self.row_wins_rois[i])
spikesorting.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def __load_waveforms(self,selectChan,file_name):
        spk_startswith = "spike_{0}".format(selectChan)
        with hp.File(file_name,"r") as f:
            times = list()
            waveforms = list()
            for chn_unit in f["spikes"].keys():
                if chn_unit.startswith(spk_startswith):
                    tep_time = f["spikes"][chn_unit]["times"].value
                    waveform = f["spikes"][chn_unit]["waveforms"].value
                    times.append(tep_time)
                    waveforms.append(waveform)
            if times:
                times = np.hstack(times)
                waveforms = np.vstack(waveforms)
                sort_index = np.argsort(times)
                waveforms = waveforms[sort_index]
                return waveforms
            else:
                return None
MetaArray.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, data=None, info=None, dtype=None, file=None, copy=False, **kwargs):
        object.__init__(self)
        #self._infoOwned = False
        self._isHDF = False

        if file is not None:
            self._data = None
            self.readFile(file, **kwargs)
            if kwargs.get("readAllData", True) and self._data is None:
                raise Exception("File read failed: %s" % file)
        else:
            self._info = info
            if (hasattr(data, 'implements') and data.implements('MetaArray')):
                self._info = data._info
                self._data = data.asarray()
            elif isinstance(data, tuple):  ## create empty array with specified shape
                self._data = np.empty(data, dtype=dtype)
            else:
                self._data = np.array(data, dtype=dtype, copy=copy)

        ## run sanity checks on info structure
        self.checkInfo()
MetaArray.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def transpose(self, *args):
        if len(args) == 1 and hasattr(args[0], '__iter__'):
            order = args[0]
        else:
            order = args

        order = [self._interpretAxis(ax) for ax in order]
        infoOrder = order  + list(range(len(order), len(self._info)))
        info = [self._info[i] for i in infoOrder]
        order = order + list(range(len(order), self.ndim))

        try:
            if self._isHDF:
                return MetaArray(np.array(self._data).transpose(order), info=info)
            else:
                return MetaArray(self._data.transpose(order), info=info)
        except:
            print(order)
            raise

    #### File I/O Routines
HDF5Exporter.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def export(self, fileName=None):
        if not HAVE_HDF5:
            raise RuntimeError("This exporter requires the h5py package, "
                               "but it was not importable.")

        if not isinstance(self.item, PlotItem):
            raise Exception("Must have a PlotItem selected for HDF5 export.")

        if fileName is None:
            self.fileSaveDialog(filter=["*.h5", "*.hdf", "*.hd5"])
            return
        dsname = self.params['Name']
        fd = h5py.File(fileName, 'a') # forces append to file... 'w' doesn't seem to "delete/overwrite"
        data = []

        appendAllX = self.params['columnMode'] == '(x,y) per plot'
        for i,c in enumerate(self.item.curves):
            d = c.getData()
            if appendAllX or i == 0:
                data.append(d[0])
            data.append(d[1])

        fdata = numpy.array(data).astype('double')
        dset = fd.create_dataset(dsname, data=fdata)
        fd.close()
h5_io.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def h5_io(filename, spike_to_load, analog_to_load):
    spikes = dict()
    analogs = dict()
    events = dict()
    comments = dict()
    with hp.File(filename,'r') as f:
        for key in f.keys():
            if key=='events':
                events['times'] = f[key]['times'].value
                events['labels'] = f[key]['labels'].value
            elif key=='comments':
                comments['times'] = f[key]['times'].value
                comments['labels'] = f[key]['labels'].value
            elif key=='spikes':
                for tem_key in f[key].keys():
                    if tem_key in spike_to_load:
                        spikes[tem_key] = f[key][tem_key]['times'].value
            elif key=='analogs':
                for tem_key in f[key].keys():
                    if tem_key in analog_to_load:
                        analogs[tem_key] = dict()
                        analogs[tem_key]['data'] = f[key][tem_key]['data'].value
                        analogs[tem_key]['sampling_rate'] = f[key][tem_key]['sampling_rate'].value
                        analogs[tem_key]['start_time'] = f[key][tem_key]['start_time'].value
    return events,comments,spikes,analogs
spikedetection.py 文件源码 项目:NeoAnalysis 作者: neoanalysis 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __load_page_data(self):
        self.__clearRows()
        if hasattr(self,"selectChan"):
            with hp.File(self.file_name,"r") as f:
                sampling_rate = f["analogs"][self.selectChan]["sampling_rate"].value
                start_time = f["analogs"][self.selectChan]["start_time"].value
                start_point = sampling_rate*self.row_num*self.current_page
                end_point = sampling_rate*self.row_num*(self.current_page+1)
                self.page_data = f["analogs"][self.selectChan]["data"][start_point:end_point]
                self.sigma = np.median(np.abs(self.page_data)/0.6745)
                Thr = self.thresholds[self.selectChan] * self.sigma
            self.sampling_rate = sampling_rate
            self.row_wins_rois = [0]*self.row_num
            for i in range(self.row_num):
                start_point = i*sampling_rate
                end_point = (i+1)*sampling_rate
                if self.page_data[start_point:end_point].size:
                    ys = self.page_data[start_point:end_point]
                    xs = np.arange(ys.size)
                    line = MultiLine(np.array([xs]),np.array([ys]),"w")
                    self.row_wins[i].addItem(line)

                self.row_wins_rois[i] = pg.InfiniteLine(pos=Thr,angle=0,movable=False)
                self.row_wins_rois[i].setZValue(10)
                self.row_wins[i].addItem(self.row_wins_rois[i])
dataset.py 文件源码 项目:spikefuel 作者: duguyue100 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def gen_tracking_db(database, tracking_stats):
    """Generate TrackingDataset structure.

    Parameters
    ----------
    database : h5py.File
        HDF5 file object
    tracking_stats : dictionary
        the dictionary that contains TrackingDataset's stats

    Returns
    -------
    database : h5py.File
        HDF5 file object with multiple groups
    """
    primary_list = tracking_stats["primary_list"]

    for pc in primary_list:
        if pc not in database:
            database.create_group(pc)
            print "[MESSAGE] Primary group %s is created" % (pc)

    print "[MESSAGE] TrackingDataset HDF5 structure is generated."
dataset.py 文件源码 项目:spikefuel 作者: duguyue100 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def gen_caltech256_db(database, caltech256_stats):
    """Generate Caltech-256 structure.

    Parameters
    ----------
    database : h5py.File
        HDF5 file object
    caltech256_stats : dictionary
        the dictionary that contains Caltech-256's stats

    Returns
    -------
    database : h5py.File
        HDF5 file object with multiple groups
    """
    caltech256_list = caltech256_stats["caltech256_list"]

    for class_name in caltech256_list:
        if class_name not in database:
            database.create_group(class_name)
            print "[MESSAGE] Class %s is created" % (class_name)

    print "[MESSAGE] Caltech-256 HDF5 structure is generated."
dataset.py 文件源码 项目:spikefuel 作者: duguyue100 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def gen_ucf50_db(database, ucf50_stats):
    """Generate UCF50 structure.

    Parameters
    ----------
    database : h5py.File
        HDF5 file object
    ucf50_stats : dictionary
        the dictionary that contains UCF50's stats

    Returns
    -------
    database : h5py.File
        HDF5 file object with multiple groups
    """
    ucf50_list = ucf50_stats["ucf50_list"]

    for category in ucf50_list:
        if category not in database:
            database.create_group(category)
            print "[MESSAGE] Category %s is created" % (category)

    print "[MESSAGE] UCF-50 HDF5 structure is generated."
benchmark.py 文件源码 项目:tfutils 作者: neuroailab 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def time_hdf5():
    data_path = create_hdf5(BATCH_SIZE * NSTEPS)

    f = h5py.File(data_path)
    durs = []
    for step in tqdm.trange(NSTEPS, desc='running hdf5'):
        start_time = time.time()
        arr = f['data'][BATCH_SIZE * step: BATCH_SIZE * (step+1)]
        read_time = time.time()
        arr = copy.deepcopy(arr)
        copy_time = time.time()
        durs.append(['hdf5 read', step, read_time - start_time])
        durs.append(['hdf5 copy', step, copy_time - read_time])
    f.close()
    os.remove(data_path)
    durs = pandas.DataFrame(durs, columns=['kind', 'stepno', 'dur'])
    return durs
generate_features.py 文件源码 项目:evaluation_tools 作者: JSALT-Rosetta 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def mean_variance_normalisation(h5f, mvn_h5f, vad=None):
    """Do mean variance normlization. Optionnaly use a vad.

    Parameters:
    ----------
    h5f: str. h5features file name
    mvn_h5f: str, h5features output name
    """
    dset = h5py.File(h5f).keys()[0]
    if vad is not None:
        raise NotImplementedError
    else:
        data = h5py.File(h5f)[dset]['features'][:]
        features = data
    epsilon = np.finfo(data.dtype).eps
    mean = np.mean(data)
    std = np.std(data)
    mvn_features = (features - mean) / (std + epsilon)
    shutil.copy(h5f, mvn_h5f)
    h5py.File(mvn_h5f)[dset]['features'][:] = mvn_features
generate_features.py 文件源码 项目:evaluation_tools 作者: JSALT-Rosetta 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def h5features_feats2stackedfeats(fb_h5f, stackedfb_h5f, nframes=7):
    """Create stacked features version of h5features file

    Parameters:
    ----------
    fb_h5f: str. h5features file name
    stackedfb_h5f: str, h5features output name
    """
    dset_name = h5py.File(fb_h5f).keys()[0]
    files = h5py.File(fb_h5f)[dset_name]['items']
    def aux(f):
        return stack_fbanks(h5features.read(fb_h5f, from_item=f)[1][f],
                            nframes=nframes)
    def time_f(f):
        return h5features.read(fb_h5f, from_item=f)[0][f]
    h5features_compute(files, stackedfb_h5f, featfunc=aux,
                      timefunc=time_f)
util.py 文件源码 项目:compresso 作者: VCG 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def load_data(name='ac3', N=-1, prefix=None, gold=False):
        '''Load data
        '''

        if not 'mri' in name:
            if gold: filename = '~/compresso/data/' + name + '/gold/' + name + '_gold.h5'
            else: filename = '~/compresso/data/' + name + '/rhoana/' + name + '_rhoana.h5'

            with h5py.File(os.path.expanduser(filename), 'r') as hf:
                output = np.array(hf['main'], dtype=np.uint64)
        else:
            filename = '~/compresso/data/MRI/' + name + '.h5'

            with h5py.File(os.path.expanduser(filename), 'r') as hf:
                output = np.array(hf['main'], dtype=np.uint64)

        if (not N == -1):
            output = output[0:N,:,:]

        return output
convert_data_2_hdf5.py 文件源码 项目:mtcnn 作者: daikankan 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def write_hdf5(file, data, label_class, label_bbox, label_landmarks):
  # transform to np array
  data_arr = np.array(data, dtype = np.float32)
  # print data_arr.shape
  # if no swapaxes, transpose to num * channel * width * height ???
  # data_arr = data_arr.transpose(0, 3, 2, 1)
  label_class_arr = np.array(label_class, dtype = np.float32)
  label_bbox_arr = np.array(label_bbox, dtype = np.float32)
  label_landmarks_arr = np.array(label_landmarks, dtype = np.float32)
  with h5py.File(file, 'w') as f:
    f['data'] = data_arr
    f['label_class'] = label_class_arr
    f['label_bbox'] = label_bbox_arr
    f['label_landmarks'] = label_landmarks_arr

# list_file format:
# image_path | label_class | label_boundingbox(4) | label_landmarks(10)


问题


面经


文章

微信
公众号

扫码关注公众号