def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_pascal3d_voxel_exemplar_annotation(index)
for index in self.image_index]
if cfg.IS_RPN:
# print out recall
for i in xrange(1, self.num_classes):
print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])
print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])
print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
python类SUBCLS_NAME的实例源码
pascal3d.py 文件源码
项目:Automatic_Group_Photography_Enhancement
作者: Yuliang-Zou
项目源码
文件源码
阅读 30
收藏 0
点赞 0
评论 0
pascal3d.py 文件源码
项目:Automatic_Group_Photography_Enhancement
作者: Yuliang-Zou
项目源码
文件源码
阅读 20
收藏 0
点赞 0
评论 0
def region_proposal_roidb(self):
"""
Return the database of regions of interest.
Ground-truth ROIs are also included.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path,
self.name + '_' + cfg.SUBCLS_NAME + '_' + cfg.REGION_PROPOSAL + '_region_proposal_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} roidb loaded from {}'.format(self.name, cache_file)
return roidb
if self._image_set != 'test':
gt_roidb = self.gt_roidb()
print 'Loading region proposal network boxes...'
model = cfg.REGION_PROPOSAL
rpn_roidb = self._load_rpn_roidb(gt_roidb, model)
print 'Region proposal network boxes loaded'
roidb = datasets.imdb.merge_roidbs(rpn_roidb, gt_roidb)
else:
print 'Loading region proposal network boxes...'
model = cfg.REGION_PROPOSAL
roidb = self._load_rpn_roidb(None, model)
print 'Region proposal network boxes loaded'
print '{} region proposals per image'.format(self._num_boxes_proposal / len(self.image_index))
with open(cache_file, 'wb') as fid:
cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote roidb to {}'.format(cache_file)
return roidb
pascal3d.py 文件源码
项目:Automatic_Group_Photography_Enhancement
作者: Yuliang-Zou
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def evaluate_detections(self, all_boxes, output_dir):
# load the mapping for subcalss the azimuth (viewpoint)
filename = os.path.join(self._pascal3d_path, cfg.SUBCLS_NAME, 'mapping.txt')
assert os.path.exists(filename), \
'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.float)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = float(words[2])
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
print 'Writing {} VOC results file'.format(cls)
filename = os.path.join(output_dir, 'det_' + self._image_set + '_' + cls + '.txt')
print filename
with open(filename, 'wt') as f:
for im_ind, index in enumerate(self.image_index):
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
# the VOCdevkit expects 1-based indices
for k in xrange(dets.shape[0]):
subcls = int(dets[k, 5])
cls_name = self.classes[self.subclass_mapping[subcls]]
assert (cls_name == cls), 'subclass not in class'
azimuth = mapping[subcls]
f.write('{:s} {:.3f} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.
format(index, dets[k, 4], azimuth,
dets[k, 0] + 1, dets[k, 1] + 1,
dets[k, 2] + 1, dets[k, 3] + 1))
# evaluate detection results
imagenet3d.py 文件源码
项目:Automatic_Group_Photography_Enhancement
作者: Yuliang-Zou
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_imagenet3d_annotation(index)
for index in self.image_index]
if cfg.IS_RPN:
# print out recall
for i in xrange(1, self.num_classes):
print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])
print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])
print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
kitti_tracking.py 文件源码
项目:Automatic_Group_Photography_Enhancement
作者: Yuliang-Zou
项目源码
文件源码
阅读 22
收藏 0
点赞 0
评论 0
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
"""
cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_kitti_voxel_exemplar_annotation(index)
for index in self.image_index]
if cfg.IS_RPN:
# print out recall
for i in xrange(1, self.num_classes):
print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])
print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])
print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
kitti_tracking.py 文件源码
项目:Automatic_Group_Photography_Enhancement
作者: Yuliang-Zou
项目源码
文件源码
阅读 23
收藏 0
点赞 0
评论 0
def region_proposal_roidb(self):
"""
Return the database of regions of interest.
Ground-truth ROIs are also included.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path,
self.name + '_' + cfg.SUBCLS_NAME + '_' + cfg.REGION_PROPOSAL + '_region_proposal_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} roidb loaded from {}'.format(self.name, cache_file)
return roidb
if self._image_set != 'testing':
gt_roidb = self.gt_roidb()
print 'Loading region proposal network boxes...'
if self._image_set == 'trainval':
model = cfg.REGION_PROPOSAL + '_trainval/'
else:
model = cfg.REGION_PROPOSAL + '_train/'
rpn_roidb = self._load_rpn_roidb(gt_roidb, model)
print 'Region proposal network boxes loaded'
roidb = datasets.imdb.merge_roidbs(rpn_roidb, gt_roidb)
else:
print 'Loading region proposal network boxes...'
model = cfg.REGION_PROPOSAL + '_trainval/'
roidb = self._load_rpn_roidb(None, model)
print 'Region proposal network boxes loaded'
print '{} region proposals per image'.format(self._num_boxes_proposal / len(self.image_index))
with open(cache_file, 'wb') as fid:
cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote roidb to {}'.format(cache_file)
return roidb
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_pascal3d_voxel_exemplar_annotation(index)
for index in self.image_index]
if cfg.IS_RPN:
# print out recall
for i in xrange(1, self.num_classes):
print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])
print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])
print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
def region_proposal_roidb(self):
"""
Return the database of regions of interest.
Ground-truth ROIs are also included.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path,
self.name + '_' + cfg.SUBCLS_NAME + '_' + cfg.REGION_PROPOSAL + '_region_proposal_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} roidb loaded from {}'.format(self.name, cache_file)
return roidb
if self._image_set != 'test':
gt_roidb = self.gt_roidb()
print 'Loading region proposal network boxes...'
model = cfg.REGION_PROPOSAL
rpn_roidb = self._load_rpn_roidb(gt_roidb, model)
print 'Region proposal network boxes loaded'
roidb = datasets.imdb.merge_roidbs(rpn_roidb, gt_roidb)
else:
print 'Loading region proposal network boxes...'
model = cfg.REGION_PROPOSAL
roidb = self._load_rpn_roidb(None, model)
print 'Region proposal network boxes loaded'
print '{} region proposals per image'.format(self._num_boxes_proposal / len(self.image_index))
with open(cache_file, 'wb') as fid:
cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote roidb to {}'.format(cache_file)
return roidb
def evaluate_detections(self, all_boxes, output_dir):
# load the mapping for subcalss the azimuth (viewpoint)
filename = os.path.join(self._pascal3d_path, cfg.SUBCLS_NAME, 'mapping.txt')
assert os.path.exists(filename), \
'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.float)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = float(words[2])
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
print 'Writing {} VOC results file'.format(cls)
filename = os.path.join(output_dir, 'det_' + self._image_set + '_' + cls + '.txt')
print filename
with open(filename, 'wt') as f:
for im_ind, index in enumerate(self.image_index):
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
# the VOCdevkit expects 1-based indices
for k in xrange(dets.shape[0]):
subcls = int(dets[k, 5])
cls_name = self.classes[self.subclass_mapping[subcls]]
assert (cls_name == cls), 'subclass not in class'
azimuth = mapping[subcls]
f.write('{:s} {:.3f} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.
format(index, dets[k, 4], azimuth,
dets[k, 0] + 1, dets[k, 1] + 1,
dets[k, 2] + 1, dets[k, 3] + 1))
# evaluate detection results
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_imagenet3d_annotation(index)
for index in self.image_index]
if cfg.IS_RPN:
# print out recall
for i in xrange(1, self.num_classes):
print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])
print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])
print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
"""
cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_kitti_voxel_exemplar_annotation(index)
for index in self.image_index]
if cfg.IS_RPN:
# print out recall
for i in xrange(1, self.num_classes):
print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])
print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])
print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
def region_proposal_roidb(self):
"""
Return the database of regions of interest.
Ground-truth ROIs are also included.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path,
self.name + '_' + cfg.SUBCLS_NAME + '_' + cfg.REGION_PROPOSAL + '_region_proposal_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} roidb loaded from {}'.format(self.name, cache_file)
return roidb
if self._image_set != 'testing':
gt_roidb = self.gt_roidb()
print 'Loading region proposal network boxes...'
if self._image_set == 'trainval':
model = cfg.REGION_PROPOSAL + '_trainval/'
else:
model = cfg.REGION_PROPOSAL + '_train/'
rpn_roidb = self._load_rpn_roidb(gt_roidb, model)
print 'Region proposal network boxes loaded'
roidb = datasets.imdb.merge_roidbs(rpn_roidb, gt_roidb)
else:
print 'Loading region proposal network boxes...'
model = cfg.REGION_PROPOSAL + '_trainval/'
roidb = self._load_rpn_roidb(None, model)
print 'Region proposal network boxes loaded'
print '{} region proposals per image'.format(self._num_boxes_proposal / len(self.image_index))
with open(cache_file, 'wb') as fid:
cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote roidb to {}'.format(cache_file)
return roidb
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_pascal3d_voxel_exemplar_annotation(index)
for index in self.image_index]
if cfg.IS_RPN:
# print out recall
for i in xrange(1, self.num_classes):
print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])
print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])
print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
def region_proposal_roidb(self):
"""
Return the database of regions of interest.
Ground-truth ROIs are also included.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path,
self.name + '_' + cfg.SUBCLS_NAME + '_' + cfg.REGION_PROPOSAL + '_region_proposal_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} roidb loaded from {}'.format(self.name, cache_file)
return roidb
if self._image_set != 'test':
gt_roidb = self.gt_roidb()
print 'Loading region proposal network boxes...'
model = cfg.REGION_PROPOSAL
rpn_roidb = self._load_rpn_roidb(gt_roidb, model)
print 'Region proposal network boxes loaded'
roidb = datasets.imdb.merge_roidbs(rpn_roidb, gt_roidb)
else:
print 'Loading region proposal network boxes...'
model = cfg.REGION_PROPOSAL
roidb = self._load_rpn_roidb(None, model)
print 'Region proposal network boxes loaded'
print '{} region proposals per image'.format(self._num_boxes_proposal / len(self.image_index))
with open(cache_file, 'wb') as fid:
cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote roidb to {}'.format(cache_file)
return roidb
def evaluate_detections(self, all_boxes, output_dir):
# load the mapping for subcalss the azimuth (viewpoint)
filename = os.path.join(self._pascal3d_path, cfg.SUBCLS_NAME, 'mapping.txt')
assert os.path.exists(filename), \
'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.float)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = float(words[2])
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
print 'Writing {} VOC results file'.format(cls)
filename = os.path.join(output_dir, 'det_' + self._image_set + '_' + cls + '.txt')
print filename
with open(filename, 'wt') as f:
for im_ind, index in enumerate(self.image_index):
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
# the VOCdevkit expects 1-based indices
for k in xrange(dets.shape[0]):
subcls = int(dets[k, 5])
cls_name = self.classes[self.subclass_mapping[subcls]]
assert (cls_name == cls), 'subclass not in class'
azimuth = mapping[subcls]
f.write('{:s} {:.3f} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.
format(index, dets[k, 4], azimuth,
dets[k, 0] + 1, dets[k, 1] + 1,
dets[k, 2] + 1, dets[k, 3] + 1))
# evaluate detection results
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_imagenet3d_annotation(index)
for index in self.image_index]
if cfg.IS_RPN:
# print out recall
for i in xrange(1, self.num_classes):
print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])
print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])
print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
"""
cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_kitti_voxel_exemplar_annotation(index)
for index in self.image_index]
if cfg.IS_RPN:
# print out recall
for i in xrange(1, self.num_classes):
print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])
print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])
print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
def region_proposal_roidb(self):
"""
Return the database of regions of interest.
Ground-truth ROIs are also included.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path,
self.name + '_' + cfg.SUBCLS_NAME + '_' + cfg.REGION_PROPOSAL + '_region_proposal_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} roidb loaded from {}'.format(self.name, cache_file)
return roidb
if self._image_set != 'testing':
gt_roidb = self.gt_roidb()
print 'Loading region proposal network boxes...'
if self._image_set == 'trainval':
model = cfg.REGION_PROPOSAL + '_trainval/'
else:
model = cfg.REGION_PROPOSAL + '_train/'
rpn_roidb = self._load_rpn_roidb(gt_roidb, model)
print 'Region proposal network boxes loaded'
roidb = datasets.imdb.merge_roidbs(rpn_roidb, gt_roidb)
else:
print 'Loading region proposal network boxes...'
model = cfg.REGION_PROPOSAL + '_trainval/'
roidb = self._load_rpn_roidb(None, model)
print 'Region proposal network boxes loaded'
print '{} region proposals per image'.format(self._num_boxes_proposal / len(self.image_index))
with open(cache_file, 'wb') as fid:
cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote roidb to {}'.format(cache_file)
return roidb
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
#cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl')
cache_file = os.path.join(self.cache_path, self.name + '_' + '_gt_roidb.pkl')
# the path is: .../Faster-RCNN_TF/data/cache/building_train_gt_roidb.pkl
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_building_annotation(index)
for index in self.image_index]
"""if cfg.IS_RPN:
# print out recall
for i in xrange(1, self.num_classes):
print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])
print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])
print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))"""
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
# ---------------------------------------------------------------------------------------------------------------- #
############## ??
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
#cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl')
cache_file = os.path.join(self.cache_path, self.name + '_' + '_gt_roidb.pkl')
# the path is: .../Faster-RCNN_TF/data/cache/building_train_gt_roidb.pkl
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_building_annotation(index)
for index in self.image_index]
"""if cfg.IS_RPN:
# print out recall
for i in xrange(1, self.num_classes):
print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])
print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])
print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))"""
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
# ---------------------------------------------------------------------------------------------------------------- #
############## ??
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_pascal3d_voxel_exemplar_annotation(index)
for index in self.image_index]
if cfg.IS_RPN:
# print out recall
for i in xrange(1, self.num_classes):
print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])
print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])
print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
def region_proposal_roidb(self):
"""
Return the database of regions of interest.
Ground-truth ROIs are also included.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path,
self.name + '_' + cfg.SUBCLS_NAME + '_' + cfg.REGION_PROPOSAL + '_region_proposal_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} roidb loaded from {}'.format(self.name, cache_file)
return roidb
if self._image_set != 'test':
gt_roidb = self.gt_roidb()
print 'Loading region proposal network boxes...'
model = cfg.REGION_PROPOSAL
rpn_roidb = self._load_rpn_roidb(gt_roidb, model)
print 'Region proposal network boxes loaded'
roidb = datasets.imdb.merge_roidbs(rpn_roidb, gt_roidb)
else:
print 'Loading region proposal network boxes...'
model = cfg.REGION_PROPOSAL
roidb = self._load_rpn_roidb(None, model)
print 'Region proposal network boxes loaded'
print '{} region proposals per image'.format(self._num_boxes_proposal / len(self.image_index))
with open(cache_file, 'wb') as fid:
cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote roidb to {}'.format(cache_file)
return roidb
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_kitti_voxel_exemplar_annotation(index)
for index in self.image_index]
if cfg.IS_RPN:
# print out recall
for i in xrange(1, self.num_classes):
print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])
print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])
print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
#cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl')
cache_file = os.path.join(self.cache_path, self.name + '_' + '_gt_roidb.pkl')
# the path is: .../Faster-RCNN_TF/data/cache/building_train_gt_roidb.pkl
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_building_annotation(index)
for index in self.image_index]
"""if cfg.IS_RPN:
# print out recall
for i in xrange(1, self.num_classes):
print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])
print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])
print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))"""
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
# ---------------------------------------------------------------------------------------------------------------- #
############## ??
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_imagenet3d_annotation(index)
for index in self.image_index]
if cfg.IS_RPN:
# print out recall
for i in xrange(1, self.num_classes):
print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])
print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])
print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
def region_proposal_roidb(self):
"""
Return the database of regions of interest.
Ground-truth ROIs are also included.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path,
self.name + '_' + cfg.SUBCLS_NAME + '_' + cfg.REGION_PROPOSAL + '_region_proposal_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} roidb loaded from {}'.format(self.name, cache_file)
return roidb
if self._image_set != 'testing':
gt_roidb = self.gt_roidb()
print 'Loading region proposal network boxes...'
if self._image_set == 'trainval':
model = cfg.REGION_PROPOSAL + '_trainval/'
else:
model = cfg.REGION_PROPOSAL + '_train/'
rpn_roidb = self._load_rpn_roidb(gt_roidb, model)
print 'Region proposal network boxes loaded'
roidb = datasets.imdb.merge_roidbs(rpn_roidb, gt_roidb)
else:
print 'Loading region proposal network boxes...'
model = cfg.REGION_PROPOSAL + '_trainval/'
roidb = self._load_rpn_roidb(None, model)
print 'Region proposal network boxes loaded'
print '{} region proposals per image'.format(self._num_boxes_proposal / len(self.image_index))
with open(cache_file, 'wb') as fid:
cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote roidb to {}'.format(cache_file)
return roidb
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_pascal3d_voxel_exemplar_annotation(index)
for index in self.image_index]
if cfg.IS_RPN:
# print out recall
for i in xrange(1, self.num_classes):
print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])
print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])
print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
def region_proposal_roidb(self):
"""
Return the database of regions of interest.
Ground-truth ROIs are also included.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path,
self.name + '_' + cfg.SUBCLS_NAME + '_' + cfg.REGION_PROPOSAL + '_region_proposal_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} roidb loaded from {}'.format(self.name, cache_file)
return roidb
if self._image_set != 'test':
gt_roidb = self.gt_roidb()
print 'Loading region proposal network boxes...'
model = cfg.REGION_PROPOSAL
rpn_roidb = self._load_rpn_roidb(gt_roidb, model)
print 'Region proposal network boxes loaded'
roidb = datasets.imdb.merge_roidbs(rpn_roidb, gt_roidb)
else:
print 'Loading region proposal network boxes...'
model = cfg.REGION_PROPOSAL
roidb = self._load_rpn_roidb(None, model)
print 'Region proposal network boxes loaded'
print '{} region proposals per image'.format(self._num_boxes_proposal / len(self.image_index))
with open(cache_file, 'wb') as fid:
cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote roidb to {}'.format(cache_file)
return roidb
def evaluate_detections(self, all_boxes, output_dir):
# load the mapping for subcalss the azimuth (viewpoint)
filename = os.path.join(self._pascal3d_path, cfg.SUBCLS_NAME, 'mapping.txt')
assert os.path.exists(filename), \
'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.float)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = float(words[2])
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
print 'Writing {} VOC results file'.format(cls)
filename = os.path.join(output_dir, 'det_' + self._image_set + '_' + cls + '.txt')
print filename
with open(filename, 'wt') as f:
for im_ind, index in enumerate(self.image_index):
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
# the VOCdevkit expects 1-based indices
for k in xrange(dets.shape[0]):
subcls = int(dets[k, 5])
cls_name = self.classes[self.subclass_mapping[subcls]]
assert (cls_name == cls), 'subclass not in class'
azimuth = mapping[subcls]
f.write('{:s} {:.3f} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.
format(index, dets[k, 4], azimuth,
dets[k, 0] + 1, dets[k, 1] + 1,
dets[k, 2] + 1, dets[k, 3] + 1))
# evaluate detection results
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_imagenet3d_annotation(index)
for index in self.image_index]
if cfg.IS_RPN:
# print out recall
for i in xrange(1, self.num_classes):
print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])
print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])
print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb