python类MODELS_DIR的实例源码

train_faster_rcnn_alt_opt.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.MODELS_DIR, *s) for s in solvers]
    # Iterations for each training stage
    max_iters = [80000, 40000, 80000, 40000]
    # max_iters = [100, 100, 100, 100]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.MODELS_DIR, net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
train_faster_rcnn_alt_opt.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.MODELS_DIR, *s) for s in solvers]
    # Iterations for each training stage
    max_iters = [80000, 40000, 80000, 40000]
    # max_iters = [100, 100, 100, 100]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.MODELS_DIR, net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
train_faster_rcnn_alt_opt.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.MODELS_DIR, *s) for s in solvers]
    # Iterations for each training stage
    max_iters = [320000, 320000, 320000, 320000]
    # max_iters = [100, 100, 100, 100]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.MODELS_DIR, net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
train_faster_rcnn_alt_opt.py 文件源码 项目:face-py-faster-rcnn 作者: playerkk 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.MODELS_DIR, *s) for s in solvers]
    # Iterations for each training stage
    max_iters = [80000, 40000, 80000, 40000]
    # max_iters = [100, 100, 100, 100]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.MODELS_DIR, net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
train_faster_rcnn_alt_opt.py 文件源码 项目:deep-fashion 作者: zuowang 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.MODELS_DIR, *s) for s in solvers]
    # Iterations for each training stage
    max_iters = [80000, 40000, 80000, 40000]
    # max_iters = [100, 100, 100, 100]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.MODELS_DIR, net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
train_faster_rcnn_alt_opt.py 文件源码 项目:RPN 作者: hfut721 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.MODELS_DIR, *s) for s in solvers]
    # Iterations for each training stage
    max_iters = [80000, 40000, 80000, 40000]
    # max_iters = [100, 100, 100, 100]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.MODELS_DIR, net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
train_faster_rcnn_alt_opt.py 文件源码 项目:faster_rcnn_logo 作者: romyny 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.MODELS_DIR, *s) for s in solvers]
    # Iterations for each training stage
    max_iters = [80000, 40000, 80000, 40000]
    # max_iters = [100, 100, 100, 100]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.MODELS_DIR, net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
train_faster_rcnn_alt_opt.py 文件源码 项目:Faster_RCNN_Training_Toolkit 作者: VerseChow 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.MODELS_DIR, *s) for s in solvers]
    # Iterations for each training stage
    max_iters = [80000, 40000, 80000, 40000]
    # max_iters = [100, 100, 100, 100]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.MODELS_DIR, net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
train_faster_rcnn_alt_opt.py 文件源码 项目:ohem 作者: abhi2610 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.MODELS_DIR, *s) for s in solvers]
    # Iterations for each training stage
    max_iters = [80000, 40000, 80000, 40000]
    # max_iters = [100, 100, 100, 100]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.MODELS_DIR, net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
train_faster_rcnn_alt_opt_doubledb.py 文件源码 项目:py-faster-rcnn-dockerface 作者: natanielruiz 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.MODELS_DIR, *s) for s in solvers]
    # Iterations for each training stage
    max_iters = [80000, 40000, 80000, 40000]
    # max_iters = [100, 100, 100, 100]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.MODELS_DIR, net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
train_faster_rcnn_alt_opt.py 文件源码 项目:py-faster-rcnn-dockerface 作者: natanielruiz 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.MODELS_DIR, *s) for s in solvers]
    # Iterations for each training stage
    max_iters = [80000, 40000, 80000, 40000]
    # max_iters = [100, 100, 100, 100]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.MODELS_DIR, net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
train_faster_rcnn_alt_opt.py 文件源码 项目:PVANet-FACE 作者: twmht 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.MODELS_DIR, *s) for s in solvers]
    # Iterations for each training stage
    max_iters = [80000, 40000, 80000, 40000]
    # max_iters = [100, 100, 100, 100]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.MODELS_DIR, net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
train_faster_rcnn_alt_opt.py 文件源码 项目:py-R-FCN 作者: YuwenXiong 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.MODELS_DIR, *s) for s in solvers]
    # Iterations for each training stage
    max_iters = [80000, 40000, 80000, 40000]
    # max_iters = [100, 100, 100, 100]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.MODELS_DIR, net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
train_faster_rcnn_alt_opt.py 文件源码 项目:lsi-faster-rcnn 作者: cguindel 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.MODELS_DIR, *s) for s in solvers]
    # Iterations for each training stage
    max_iters = [80000, 40000, 80000, 40000]
    # max_iters = [100, 100, 100, 100]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.MODELS_DIR, net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
train_rfcn_alt_opt_5stage.py 文件源码 项目:py-R-FCN 作者: YuwenXiong 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_solvers(imdb_name, net_name, model_name):
    # R-FCN Alternating Optimization
    # Solver for each training stage
    if imdb_name.startswith('coco'):
        solvers = [[net_name, model_name, 'stage1_rpn_solver360k480k.pt'],
                   [net_name, model_name, 'stage1_rfcn_ohem_solver360k480k.pt'],
                   [net_name, model_name, 'stage2_rpn_solver360k480k.pt'],
                   [net_name, model_name, 'stage2_rfcn_ohem_solver360k480k.pt'],
                   [net_name, model_name, 'stage3_rpn_solver360k480k.pt']]
        solvers = [os.path.join('.', 'models', 'coco', *s) for s in solvers]
        # Iterations for each training stage
        max_iters = [480000, 480000, 480000, 480000, 480000]
        # Test prototxt for the RPN
        rpn_test_prototxt = os.path.join(
            '.', 'models', 'coco', net_name, model_name, 'rpn_test.pt')
    else:
        solvers = [[net_name, model_name, 'stage1_rpn_solver60k80k.pt'],
                   [net_name, model_name, 'stage1_rfcn_ohem_solver80k120k.pt'],
                   [net_name, model_name, 'stage2_rpn_solver60k80k.pt'],
                   [net_name, model_name, 'stage2_rfcn_ohem_solver80k120k.pt'],
                   [net_name, model_name, 'stage3_rpn_solver60k80k.pt']]
        solvers = [os.path.join(cfg.MODELS_DIR, *s) for s in solvers]
        # Iterations for each training stage
        max_iters = [80000, 120000, 80000, 120000, 80000]
        # Test prototxt for the RPN
        rpn_test_prototxt = os.path.join(
            cfg.MODELS_DIR, net_name, model_name, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt


问题


面经


文章

微信
公众号

扫码关注公众号