python类DATA_DIR的实例源码

coco.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, image_set, year):
        imdb.__init__(self, 'coco_' + year + '_' + image_set)
        # COCO specific config options
        self.config = {'top_k' : 2000,
                       'use_salt' : True,
                       'cleanup' : True,
                       'crowd_thresh' : 0.7,
                       'min_size' : 2}
        # name, paths
        self._year = year
        self._image_set = image_set
        self._data_path = osp.join(cfg.DATA_DIR, 'coco')
        # load COCO API, classes, class <-> id mappings
        self._COCO = COCO(self._get_ann_file())
        cats = self._COCO.loadCats(self._COCO.getCatIds())
        self._classes = tuple(['__background__'] + [c['name'] for c in cats])
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
        self._class_to_coco_cat_id = dict(zip([c['name'] for c in cats],
                                              self._COCO.getCatIds()))
        self._image_index = self._load_image_set_index()
        # Default to roidb handler
        self.set_proposal_method('selective_search')
        self.competition_mode(False)

        # Some image sets are "views" (i.e. subsets) into others.
        # For example, minival2014 is a random 5000 image subset of val2014.
        # This mapping tells us where the view's images and proposals come from.
        self._view_map = {
            'minival2014' : 'val2014',          # 5k val2014 subset
            'valminusminival2014' : 'val2014',  # val2014 \setminus minival2014
        }
        coco_name = image_set + year  # e.g., "val2014"
        self._data_name = (self._view_map[coco_name]
                           if self._view_map.has_key(coco_name)
                           else coco_name)
        # Dataset splits that have ground-truth annotations (test splits
        # do not have gt annotations)
        self._gt_splits = ('train', 'val', 'minival')
imdb.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def cache_path(self):
        cache_path = osp.abspath(osp.join(cfg.DATA_DIR, 'cache'))
        if not os.path.exists(cache_path):
            os.makedirs(cache_path)
        return cache_path
pascal_voc.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _get_default_path(self):
        """
        Return the default path where PASCAL VOC is expected to be installed.
        """
        return os.path.join(cfg.DATA_DIR, 'VOCdevkit' + self._year)
coco.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, image_set, year):
        imdb.__init__(self, 'coco_' + year + '_' + image_set)
        # COCO specific config options
        self.config = {'top_k' : 2000,
                       'use_salt' : True,
                       'cleanup' : True,
                       'crowd_thresh' : 0.7,
                       'min_size' : 2}
        # name, paths
        self._year = year
        self._image_set = image_set
        self._data_path = osp.join(cfg.DATA_DIR, 'coco')
        # load COCO API, classes, class <-> id mappings
        self._COCO = COCO(self._get_ann_file())
        cats = self._COCO.loadCats(self._COCO.getCatIds())
        self._classes = tuple(['__background__'] + [c['name'] for c in cats])
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
        self._class_to_coco_cat_id = dict(zip([c['name'] for c in cats],
                                              self._COCO.getCatIds()))
        self._image_index = self._load_image_set_index()
        # Default to roidb handler
        self.set_proposal_method('selective_search')
        self.competition_mode(False)

        # Some image sets are "views" (i.e. subsets) into others.
        # For example, minival2014 is a random 5000 image subset of val2014.
        # This mapping tells us where the view's images and proposals come from.
        self._view_map = {
            'minival2014' : 'val2014',          # 5k val2014 subset
            'valminusminival2014' : 'val2014',  # val2014 \setminus minival2014
        }
        coco_name = image_set + year  # e.g., "val2014"
        self._data_name = (self._view_map[coco_name]
                           if self._view_map.has_key(coco_name)
                           else coco_name)
        # Dataset splits that have ground-truth annotations (test splits
        # do not have gt annotations)
        self._gt_splits = ('train', 'val', 'minival')
imdb.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def cache_path(self):
        cache_path = osp.abspath(osp.join(cfg.DATA_DIR, 'cache'))
        if not os.path.exists(cache_path):
            os.makedirs(cache_path)
        return cache_path
pascal_voc.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _get_default_path(self):
        """
        Return the default path where PASCAL VOC is expected to be installed.
        """
        return os.path.join(cfg.DATA_DIR, 'VOCdevkit' + self._year)
coco.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, image_set, year):
        imdb.__init__(self, 'coco_' + year + '_' + image_set)
        # COCO specific config options
        self.config = {'top_k' : 2000,
                       'use_salt' : True,
                       'cleanup' : True,
                       'crowd_thresh' : 0.7,
                       'min_size' : 2}
        # name, paths
        self._year = year
        self._image_set = image_set
        self._data_path = osp.join(cfg.DATA_DIR, 'coco')
        # load COCO API, classes, class <-> id mappings
        self._COCO = COCO(self._get_ann_file())
        cats = self._COCO.loadCats(self._COCO.getCatIds())
        self._classes = tuple(['__background__'] + [c['name'] for c in cats])
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
        self._class_to_coco_cat_id = dict(zip([c['name'] for c in cats],
                                              self._COCO.getCatIds()))
        self._image_index = self._load_image_set_index()
        # Default to roidb handler
        self.set_proposal_method('selective_search')
        self.competition_mode(False)

        # Some image sets are "views" (i.e. subsets) into others.
        # For example, minival2014 is a random 5000 image subset of val2014.
        # This mapping tells us where the view's images and proposals come from.
        self._view_map = {
            'minival2014' : 'val2014',          # 5k val2014 subset
            'valminusminival2014' : 'val2014',  # val2014 \setminus minival2014
        }
        coco_name = image_set + year  # e.g., "val2014"
        self._data_name = (self._view_map[coco_name]
                           if self._view_map.has_key(coco_name)
                           else coco_name)
        # Dataset splits that have ground-truth annotations (test splits
        # do not have gt annotations)
        self._gt_splits = ('train', 'val', 'minival')
imagenet.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _get_default_path(self):
        """
        Return the default path where PASCAL VOC is expected to be installed.
        """
        return os.path.join(cfg.DATA_DIR, 'ImageNet' + self._year)
imdb.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def cache_path(self):
        cache_path = osp.abspath(osp.join(cfg.DATA_DIR, 'cache'))
        if not os.path.exists(cache_path):
            os.makedirs(cache_path)
        return cache_path
demo.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def demo(net, image_name):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image
    im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(net, im)
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls_ind, cls in enumerate(CLASSES[1:]):
        cls_ind += 1 # because we skipped background
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        vis_detections(im, cls, dets, thresh=CONF_THRESH)
pascal_voc.py 文件源码 项目:chainer-faster-rcnn 作者: mitmul 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _get_default_path(self):
        """
        Return the default path where PASCAL VOC is expected to be installed.
        """
        return os.path.join(cfg.DATA_DIR, 'VOCdevkit' + self._year)
imdb.py 文件源码 项目:chainer-faster-rcnn 作者: mitmul 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def cache_path(self):
        cache_path = osp.abspath(osp.join(cfg.DATA_DIR, 'cache'))
        if not os.path.exists(cache_path):
            os.makedirs(cache_path)
        return cache_path
pascal_voc.py 文件源码 项目:face-py-faster-rcnn 作者: playerkk 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _get_default_path(self):
        """
        Return the default path where PASCAL VOC is expected to be installed.
        """
        return os.path.join(cfg.DATA_DIR, 'VOCdevkit' + self._year)
coco.py 文件源码 项目:face-py-faster-rcnn 作者: playerkk 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, image_set, year):
        imdb.__init__(self, 'coco_' + year + '_' + image_set)
        # COCO specific config options
        self.config = {'top_k' : 2000,
                       'use_salt' : True,
                       'cleanup' : True,
                       'crowd_thresh' : 0.7,
                       'min_size' : 2}
        # name, paths
        self._year = year
        self._image_set = image_set
        self._data_path = osp.join(cfg.DATA_DIR, 'coco')
        # load COCO API, classes, class <-> id mappings
        self._COCO = COCO(self._get_ann_file())
        cats = self._COCO.loadCats(self._COCO.getCatIds())
        self._classes = tuple(['__background__'] + [c['name'] for c in cats])
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
        self._class_to_coco_cat_id = dict(zip([c['name'] for c in cats],
                                              self._COCO.getCatIds()))
        self._image_index = self._load_image_set_index()
        # Default to roidb handler
        self.set_proposal_method('selective_search')
        self.competition_mode(False)

        # Some image sets are "views" (i.e. subsets) into others.
        # For example, minival2014 is a random 5000 image subset of val2014.
        # This mapping tells us where the view's images and proposals come from.
        self._view_map = {
            'minival2014' : 'val2014',          # 5k val2014 subset
            'valminusminival2014' : 'val2014',  # val2014 \setminus minival2014
        }
        coco_name = image_set + year  # e.g., "val2014"
        self._data_name = (self._view_map[coco_name]
                           if self._view_map.has_key(coco_name)
                           else coco_name)
        # Dataset splits that have ground-truth annotations (test splits
        # do not have gt annotations)
        self._gt_splits = ('train', 'val', 'minival')
imdb.py 文件源码 项目:face-py-faster-rcnn 作者: playerkk 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def cache_path(self):
        cache_path = osp.abspath(osp.join(cfg.DATA_DIR, 'cache'))
        if not os.path.exists(cache_path):
            os.makedirs(cache_path)
        return cache_path
pascal_voc.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _get_default_path(self):
        """
        Return the default path where PASCAL VOC is expected to be installed.
        """
        return os.path.join(cfg.DATA_DIR, 'VOCdevkit' + self._year)
coco.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, image_set, year):
        imdb.__init__(self, 'coco_' + year + '_' + image_set)
        # COCO specific config options
        self.config = {'top_k' : 2000,
                       'use_salt' : True,
                       'cleanup' : True,
                       'crowd_thresh' : 0.7,
                       'min_size' : 2}
        # name, paths
        self._year = year
        self._image_set = image_set
        self._data_path = osp.join(cfg.DATA_DIR, 'coco')
        # load COCO API, classes, class <-> id mappings
        self._COCO = COCO(self._get_ann_file())
        cats = self._COCO.loadCats(self._COCO.getCatIds())
        self._classes = tuple(['__background__'] + [c['name'] for c in cats])
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
        self._class_to_coco_cat_id = dict(zip([c['name'] for c in cats],
                                              self._COCO.getCatIds()))
        self._image_index = self._load_image_set_index()
        # Default to roidb handler
        self.set_proposal_method('selective_search')
        self.competition_mode(False)

        # Some image sets are "views" (i.e. subsets) into others.
        # For example, minival2014 is a random 5000 image subset of val2014.
        # This mapping tells us where the view's images and proposals come from.
        self._view_map = {
            'minival2014' : 'val2014',          # 5k val2014 subset
            'valminusminival2014' : 'val2014',  # val2014 \setminus minival2014
        }
        coco_name = image_set + year  # e.g., "val2014"
        self._data_name = (self._view_map[coco_name]
                           if self._view_map.has_key(coco_name)
                           else coco_name)
        # Dataset splits that have ground-truth annotations (test splits
        # do not have gt annotations)
        self._gt_splits = ('train', 'val', 'minival')
imdb.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def cache_path(self):
        cache_path = osp.abspath(osp.join(cfg.DATA_DIR, 'cache'))
        if not os.path.exists(cache_path):
            os.makedirs(cache_path)
        return cache_path
test_yl.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def demo(sess, net, image_name):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image
    im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
    #im_file = os.path.join('/home/corgi/Lab/label/pos_frame/ACCV/training/000001/',image_name)
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(sess, net, im)
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    im = im[:, :, (2, 1, 0)]
    fig, ax = plt.subplots(figsize=(12, 12))
    ax.imshow(im, aspect='equal')

    CONF_THRESH = 0.9
    NMS_THRESH = 0.3
    for cls_ind, cls in enumerate(CLASSES[1:]):
        cls_ind += 1 # because we skipped background
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        vis_detections(im, cls, dets, ax, thresh=CONF_THRESH)
demo.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def demo(sess, net, image_name):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image
    im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
    #im_file = os.path.join('/home/corgi/Lab/label/pos_frame/ACCV/training/000001/',image_name)
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    # scores, boxes = im_detect(sess, net, im)
    scores, boxes, eyes, smiles = im_detect_ori(sess, net, im)
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    im = im[:, :, (2, 1, 0)]
    fig, ax = plt.subplots(figsize=(8, 8))
    ax.imshow(im, aspect='equal')

    CONF_THRESH = 0.9
    NMS_THRESH = 0.3
    for cls_ind, cls in enumerate(CLASSES[20:]):
        cls_ind += 20 # because we skipped everything except face
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        eye  = eyes[keep, :]
        smile= smiles[keep, :]
        vis_detections(im, cls, dets, eye, smile, ax, thresh=CONF_THRESH)


问题


面经


文章

微信
公众号

扫码关注公众号