def _compute_targets(ex_rois, gt_rois):
"""Compute bounding-box regression targets for an image. The targets are scale invariance"""
ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + cfg.EPS
ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + cfg.EPS
ex_ctr_x = ex_rois[:, 0] + 0.5 * ex_widths
ex_ctr_y = ex_rois[:, 1] + 0.5 * ex_heights
gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + cfg.EPS
gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + cfg.EPS
gt_ctr_x = gt_rois[:, 0] + 0.5 * gt_widths
gt_ctr_y = gt_rois[:, 1] + 0.5 * gt_heights
targets_dx = (gt_ctr_x - ex_ctr_x) / ex_widths
targets_dy = (gt_ctr_y - ex_ctr_y) / ex_heights
targets_dw = np.log(gt_widths / ex_widths)
targets_dh = np.log(gt_heights / ex_heights)
targets = np.zeros((ex_rois.shape[0], 4), dtype=np.float32)
targets[:, 0] = targets_dx
targets[:, 1] = targets_dy
targets[:, 2] = targets_dw
targets[:, 3] = targets_dh
return targets
python类EPS的实例源码
roidb.py 文件源码
项目:Automatic_Group_Photography_Enhancement
作者: Yuliang-Zou
项目源码
文件源码
阅读 29
收藏 0
点赞 0
评论 0
def _compute_targets(ex_rois, gt_rois):
"""Compute bounding-box regression targets for an image. The targets are scale invariance"""
ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + cfg.EPS
ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + cfg.EPS
ex_ctr_x = ex_rois[:, 0] + 0.5 * ex_widths
ex_ctr_y = ex_rois[:, 1] + 0.5 * ex_heights
gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + cfg.EPS
gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + cfg.EPS
gt_ctr_x = gt_rois[:, 0] + 0.5 * gt_widths
gt_ctr_y = gt_rois[:, 1] + 0.5 * gt_heights
targets_dx = (gt_ctr_x - ex_ctr_x) / ex_widths
targets_dy = (gt_ctr_y - ex_ctr_y) / ex_heights
targets_dw = np.log(gt_widths / ex_widths)
targets_dh = np.log(gt_heights / ex_heights)
targets = np.zeros((ex_rois.shape[0], 4), dtype=np.float32)
targets[:, 0] = targets_dx
targets[:, 1] = targets_dy
targets[:, 2] = targets_dw
targets[:, 3] = targets_dh
return targets
def _compute_targets(ex_rois, gt_rois):
"""Compute bounding-box regression targets for an image. The targets are scale invariance"""
ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + cfg.EPS
ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + cfg.EPS
ex_ctr_x = ex_rois[:, 0] + 0.5 * ex_widths
ex_ctr_y = ex_rois[:, 1] + 0.5 * ex_heights
gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + cfg.EPS
gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + cfg.EPS
gt_ctr_x = gt_rois[:, 0] + 0.5 * gt_widths
gt_ctr_y = gt_rois[:, 1] + 0.5 * gt_heights
targets_dx = (gt_ctr_x - ex_ctr_x) / ex_widths
targets_dy = (gt_ctr_y - ex_ctr_y) / ex_heights
targets_dw = np.log(gt_widths / ex_widths)
targets_dh = np.log(gt_heights / ex_heights)
targets = np.zeros((ex_rois.shape[0], 4), dtype=np.float32)
targets[:, 0] = targets_dx
targets[:, 1] = targets_dy
targets[:, 2] = targets_dw
targets[:, 3] = targets_dh
return targets
def _compute_targets(ex_rois, gt_rois):
"""Compute bounding-box regression targets for an image. The targets are scale invariance"""
ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + cfg.EPS
ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + cfg.EPS
ex_ctr_x = ex_rois[:, 0] + 0.5 * ex_widths
ex_ctr_y = ex_rois[:, 1] + 0.5 * ex_heights
gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + cfg.EPS
gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + cfg.EPS
gt_ctr_x = gt_rois[:, 0] + 0.5 * gt_widths
gt_ctr_y = gt_rois[:, 1] + 0.5 * gt_heights
targets_dx = (gt_ctr_x - ex_ctr_x) / ex_widths
targets_dy = (gt_ctr_y - ex_ctr_y) / ex_heights
targets_dw = np.log(gt_widths / ex_widths)
targets_dh = np.log(gt_heights / ex_heights)
targets = np.zeros((ex_rois.shape[0], 4), dtype=np.float32)
targets[:, 0] = targets_dx
targets[:, 1] = targets_dy
targets[:, 2] = targets_dw
targets[:, 3] = targets_dh
return targets
def _compute_targets(ex_rois, gt_rois):
"""Compute bounding-box regression targets for an image. The targets are scale invariance"""
ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + cfg.EPS
ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + cfg.EPS
ex_ctr_x = ex_rois[:, 0] + 0.5 * ex_widths
ex_ctr_y = ex_rois[:, 1] + 0.5 * ex_heights
gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + cfg.EPS
gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + cfg.EPS
gt_ctr_x = gt_rois[:, 0] + 0.5 * gt_widths
gt_ctr_y = gt_rois[:, 1] + 0.5 * gt_heights
targets_dx = (gt_ctr_x - ex_ctr_x) / ex_widths
targets_dy = (gt_ctr_y - ex_ctr_y) / ex_heights
targets_dw = np.log(gt_widths / ex_widths)
targets_dh = np.log(gt_heights / ex_heights)
targets = np.zeros((ex_rois.shape[0], 4), dtype=np.float32)
targets[:, 0] = targets_dx
targets[:, 1] = targets_dy
targets[:, 2] = targets_dw
targets[:, 3] = targets_dh
return targets
def _compute_targets(ex_rois, gt_rois):
"""Compute bounding-box regression targets for an image. The targets are scale invariance"""
ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + cfg.EPS
ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + cfg.EPS
ex_ctr_x = ex_rois[:, 0] + 0.5 * ex_widths
ex_ctr_y = ex_rois[:, 1] + 0.5 * ex_heights
gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + cfg.EPS
gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + cfg.EPS
gt_ctr_x = gt_rois[:, 0] + 0.5 * gt_widths
gt_ctr_y = gt_rois[:, 1] + 0.5 * gt_heights
targets_dx = (gt_ctr_x - ex_ctr_x) / ex_widths
targets_dy = (gt_ctr_y - ex_ctr_y) / ex_heights
targets_dw = np.log(gt_widths / ex_widths)
targets_dh = np.log(gt_heights / ex_heights)
targets = np.zeros((ex_rois.shape[0], 4), dtype=np.float32)
targets[:, 0] = targets_dx
targets[:, 1] = targets_dy
targets[:, 2] = targets_dw
targets[:, 3] = targets_dh
return targets
def setup(self, bottom, top):
layer_params = yaml.load(self.param_str_)
anchor_scales = layer_params.get('scales', (8, 16, 32))
self._anchors = generate_anchors(scales=np.array(anchor_scales))
self._num_anchors = self._anchors.shape[0]
self._feat_stride = layer_params['feat_stride']
if DEBUG:
print 'anchors:'
print self._anchors
print 'anchor shapes:'
print np.hstack((
self._anchors[:, 2::4] - self._anchors[:, 0::4],
self._anchors[:, 3::4] - self._anchors[:, 1::4],
))
self._counts = cfg.EPS
self._sums = np.zeros((1, 4))
self._squared_sums = np.zeros((1, 4))
self._fg_sum = 0
self._bg_sum = 0
self._count = 0
# allow boxes to sit over the edge by a small amount
self._allowed_border = layer_params.get('allowed_border', 0)
height, width = bottom[0].data.shape[-2:]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width
A = self._num_anchors
# labels
top[0].reshape(1, 1, A * height, width)
# bbox_targets
top[1].reshape(1, A * 4, height, width)
# bbox_inside_weights
top[2].reshape(1, A * 4, height, width)
# bbox_outside_weights
top[3].reshape(1, A * 4, height, width)
def _bbox_pred(boxes, box_deltas):
"""Transform the set of class-agnostic boxes into class-specific boxes
by applying the predicted offsets (box_deltas)
"""
if boxes.shape[0] == 0:
return np.zeros((0, box_deltas.shape[1]))
boxes = boxes.astype(np.float, copy=False)
widths = boxes[:, 2] - boxes[:, 0] + cfg.EPS
heights = boxes[:, 3] - boxes[:, 1] + cfg.EPS
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
dx = box_deltas[:, 0::4]
dy = box_deltas[:, 1::4]
dw = box_deltas[:, 2::4]
dh = box_deltas[:, 3::4]
pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis]
pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis]
pred_w = np.exp(dw) * widths[:, np.newaxis]
pred_h = np.exp(dh) * heights[:, np.newaxis]
pred_boxes = np.zeros(box_deltas.shape)
# x1
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w
# y1
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h
# x2
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w
# y2
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h
return pred_boxes
def setup(self, bottom, top):
layer_params = yaml.load(self.param_str_)
anchor_scales = layer_params.get('scales', (8, 16, 32))
self._anchors = generate_anchors(scales=np.array(anchor_scales))
self._num_anchors = self._anchors.shape[0]
self._feat_stride = layer_params['feat_stride']
if DEBUG:
print 'anchors:'
print self._anchors
print 'anchor shapes:'
print np.hstack((
self._anchors[:, 2::4] - self._anchors[:, 0::4],
self._anchors[:, 3::4] - self._anchors[:, 1::4],
))
self._counts = cfg.EPS
self._sums = np.zeros((1, 4))
self._squared_sums = np.zeros((1, 4))
self._fg_sum = 0
self._bg_sum = 0
self._count = 0
# allow boxes to sit over the edge by a small amount
self._allowed_border = layer_params.get('allowed_border', 0)
height, width = bottom[0].data.shape[-2:]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width
A = self._num_anchors
# labels
top[0].reshape(1, 1, A * height, width)
# bbox_targets
top[1].reshape(1, A * 4, height, width)
# bbox_inside_weights
top[2].reshape(1, A * 4, height, width)
# bbox_outside_weights
top[3].reshape(1, A * 4, height, width)
def setup(self, bottom, top):
self._anchors = generate_anchors()
self._num_anchors = self._anchors.shape[0]
if DEBUG:
print 'anchors:'
print self._anchors
print 'anchor shapes:'
print np.hstack((
self._anchors[:, 2::4] - self._anchors[:, 0::4],
self._anchors[:, 3::4] - self._anchors[:, 1::4],
))
self._counts = cfg.EPS
self._sums = np.zeros((1, 4))
self._squared_sums = np.zeros((1, 4))
self._fg_sum = 0
self._bg_sum = 0
self._count = 0
layer_params = yaml.load(self.param_str_)
self._feat_stride = layer_params['feat_stride']
# allow boxes to sit over the edge by a small amount
self._allowed_border = layer_params.get('allowed_border', 0)
height, width = bottom[0].data.shape[-2:]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width
A = self._num_anchors
# labels
top[0].reshape(1, 1, A * height, width)
# bbox_targets
top[1].reshape(1, A * 4, height, width)
# bbox_inside_weights
top[2].reshape(1, A * 4, height, width)
# bbox_outside_weights
top[3].reshape(1, A * 4, height, width)
anchor_target_layer.py 文件源码
项目:py-faster-rcnn-resnet-imagenet
作者: tianzhi0549
项目源码
文件源码
阅读 22
收藏 0
点赞 0
评论 0
def setup(self, bottom, top):
layer_params = yaml.load(self.param_str)
anchor_scales = layer_params.get('scales', (8, 16, 32))
self._anchors = generate_anchors(scales=np.array(anchor_scales))
self._num_anchors = self._anchors.shape[0]
self._feat_stride = layer_params['feat_stride']
if DEBUG:
print 'anchors:'
print self._anchors
print 'anchor shapes:'
print np.hstack((
self._anchors[:, 2::4] - self._anchors[:, 0::4],
self._anchors[:, 3::4] - self._anchors[:, 1::4],
))
self._counts = cfg.EPS
self._sums = np.zeros((1, 4))
self._squared_sums = np.zeros((1, 4))
self._fg_sum = 0
self._bg_sum = 0
self._count = 0
# allow boxes to sit over the edge by a small amount
self._allowed_border = layer_params.get('allowed_border', 0)
height, width = bottom[0].data.shape[-2:]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width
A = self._num_anchors
# labels
top[0].reshape(1, 1, A * height, width)
# bbox_targets
top[1].reshape(1, A * 4, height, width)
# bbox_inside_weights
top[2].reshape(1, A * 4, height, width)
# bbox_outside_weights
top[3].reshape(1, A * 4, height, width)
def setup(self, bottom, top):
layer_params = yaml.load(self.param_str_)
anchor_scales = layer_params.get('scales', (8, 16, 32))
self._anchors = generate_anchors(scales=np.array(anchor_scales))
self._num_anchors = self._anchors.shape[0]
self._feat_stride = layer_params['feat_stride']
if DEBUG:
print 'anchors:'
print self._anchors
print 'anchor shapes:'
print np.hstack((
self._anchors[:, 2::4] - self._anchors[:, 0::4],
self._anchors[:, 3::4] - self._anchors[:, 1::4],
))
self._counts = cfg.EPS
self._sums = np.zeros((1, 4))
self._squared_sums = np.zeros((1, 4))
self._fg_sum = 0
self._bg_sum = 0
self._count = 0
# allow boxes to sit over the edge by a small amount
self._allowed_border = layer_params.get('allowed_border', 0)
height, width = bottom[0].data.shape[-2:]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width
A = self._num_anchors
# labels
top[0].reshape(1, 1, A * height, width)
# bbox_targets
top[1].reshape(1, A * 4, height, width)
# bbox_inside_weights
top[2].reshape(1, A * 4, height, width)
# bbox_outside_weights
top[3].reshape(1, A * 4, height, width)
roidb.py 文件源码
项目:Automatic_Group_Photography_Enhancement
作者: Yuliang-Zou
项目源码
文件源码
阅读 28
收藏 0
点赞 0
评论 0
def add_bbox_regression_targets(roidb):
"""Add information needed to train bounding-box regressors."""
assert len(roidb) > 0
assert 'info_boxes' in roidb[0], 'Did you call prepare_roidb first?'
num_images = len(roidb)
# Infer number of classes from the number of columns in gt_overlaps
num_classes = roidb[0]['gt_overlaps'].shape[1]
# Compute values needed for means and stds
# var(x) = E(x^2) - E(x)^2
class_counts = np.zeros((num_classes, 1)) + cfg.EPS
sums = np.zeros((num_classes, 4))
squared_sums = np.zeros((num_classes, 4))
for im_i in xrange(num_images):
targets = roidb[im_i]['info_boxes']
for cls in xrange(1, num_classes):
cls_inds = np.where(targets[:, 12] == cls)[0]
if cls_inds.size > 0:
class_counts[cls] += cls_inds.size
sums[cls, :] += targets[cls_inds, 14:].sum(axis=0)
squared_sums[cls, :] += (targets[cls_inds, 14:] ** 2).sum(axis=0)
means = sums / class_counts
stds = np.sqrt(squared_sums / class_counts - means ** 2)
# Normalize targets
for im_i in xrange(num_images):
targets = roidb[im_i]['info_boxes']
for cls in xrange(1, num_classes):
cls_inds = np.where(targets[:, 12] == cls)[0]
roidb[im_i]['info_boxes'][cls_inds, 14:] -= means[cls, :]
if stds[cls, 0] != 0:
roidb[im_i]['info_boxes'][cls_inds, 14:] /= stds[cls, :]
# These values will be needed for making predictions
# (the predicts will need to be unnormalized and uncentered)
return means.ravel(), stds.ravel()
anchor_target_layer.py 文件源码
项目:Automatic_Group_Photography_Enhancement
作者: Yuliang-Zou
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def setup(self, bottom, top):
self._anchors = generate_anchors(cfg.TRAIN.RPN_BASE_SIZE, cfg.TRAIN.RPN_ASPECTS, cfg.TRAIN.RPN_SCALES)
self._num_anchors = self._anchors.shape[0]
if DEBUG:
print 'anchors:'
print self._anchors
print 'anchor shapes:'
print np.hstack((
self._anchors[:, 2::4] - self._anchors[:, 0::4],
self._anchors[:, 3::4] - self._anchors[:, 1::4],
))
self._counts = cfg.EPS
self._sums = np.zeros((1, 4))
self._squared_sums = np.zeros((1, 4))
self._fg_sum = 0
self._bg_sum = 0
self._count = 0
layer_params = yaml.load(self.param_str_)
self._feat_stride = layer_params['feat_stride']
# allow boxes to sit over the edge by a small amount
self._allowed_border = layer_params.get('allowed_border', 0)
height, width = bottom[0].data.shape[-2:]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width
A = self._num_anchors
# labels
top[0].reshape(1, 1, A * height, width)
# bbox_targets
top[1].reshape(1, A * 4, height, width)
# bbox_inside_weights
top[2].reshape(1, A * 4, height, width)
# bbox_outside_weights
top[3].reshape(1, A * 4, height, width)
def setup(self, bottom, top):
layer_params = yaml.load(self.param_str_)
anchor_scales = layer_params.get('scales', (8, 16, 32))
self._anchors = generate_anchors(scales=np.array(anchor_scales))
self._num_anchors = self._anchors.shape[0]
self._feat_stride = layer_params['feat_stride']
if DEBUG:
print 'anchors:'
print self._anchors
print 'anchor shapes:'
print np.hstack((
self._anchors[:, 2::4] - self._anchors[:, 0::4],
self._anchors[:, 3::4] - self._anchors[:, 1::4],
))
self._counts = cfg.EPS
self._sums = np.zeros((1, 4))
self._squared_sums = np.zeros((1, 4))
self._fg_sum = 0
self._bg_sum = 0
self._count = 0
# allow boxes to sit over the edge by a small amount
self._allowed_border = layer_params.get('allowed_border', 0)
height, width = bottom[0].data.shape[-2:]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width
A = self._num_anchors
# labels
top[0].reshape(1, 1, A * height, width)
# bbox_targets
top[1].reshape(1, A * 4, height, width)
# bbox_inside_weights
top[2].reshape(1, A * 4, height, width)
# bbox_outside_weights
top[3].reshape(1, A * 4, height, width)
def setup(self, bottom, top):
layer_params = yaml.load(self.param_str_)
anchor_scales = layer_params.get('scales', (8, 16, 32))
self._anchors = generate_anchors(scales=np.array(anchor_scales))
self._num_anchors = self._anchors.shape[0]
self._feat_stride = layer_params['feat_stride']
if DEBUG:
print 'anchors:'
print self._anchors
print 'anchor shapes:'
print np.hstack((
self._anchors[:, 2::4] - self._anchors[:, 0::4],
self._anchors[:, 3::4] - self._anchors[:, 1::4],
))
self._counts = cfg.EPS
self._sums = np.zeros((1, 4))
self._squared_sums = np.zeros((1, 4))
self._fg_sum = 0
self._bg_sum = 0
self._count = 0
# allow boxes to sit over the edge by a small amount
self._allowed_border = layer_params.get('allowed_border', 0)
height, width = bottom[0].data.shape[-2:]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width
A = self._num_anchors
# labels
top[0].reshape(1, 1, A * height, width)
# bbox_targets
top[1].reshape(1, A * 4, height, width)
# bbox_inside_weights
top[2].reshape(1, A * 4, height, width)
# bbox_outside_weights
top[3].reshape(1, A * 4, height, width)
def add_bbox_regression_targets(roidb):
"""Add information needed to train bounding-box regressors."""
assert len(roidb) > 0
assert 'info_boxes' in roidb[0], 'Did you call prepare_roidb first?'
num_images = len(roidb)
# Infer number of classes from the number of columns in gt_overlaps
num_classes = roidb[0]['gt_overlaps'].shape[1]
# Compute values needed for means and stds
# var(x) = E(x^2) - E(x)^2
class_counts = np.zeros((num_classes, 1)) + cfg.EPS
sums = np.zeros((num_classes, 4))
squared_sums = np.zeros((num_classes, 4))
for im_i in xrange(num_images):
targets = roidb[im_i]['info_boxes']
for cls in xrange(1, num_classes):
cls_inds = np.where(targets[:, 12] == cls)[0]
if cls_inds.size > 0:
class_counts[cls] += cls_inds.size
sums[cls, :] += targets[cls_inds, 14:].sum(axis=0)
squared_sums[cls, :] += (targets[cls_inds, 14:] ** 2).sum(axis=0)
means = sums / class_counts
stds = np.sqrt(squared_sums / class_counts - means ** 2)
# Normalize targets
for im_i in xrange(num_images):
targets = roidb[im_i]['info_boxes']
for cls in xrange(1, num_classes):
cls_inds = np.where(targets[:, 12] == cls)[0]
roidb[im_i]['info_boxes'][cls_inds, 14:] -= means[cls, :]
if stds[cls, 0] != 0:
roidb[im_i]['info_boxes'][cls_inds, 14:] /= stds[cls, :]
# These values will be needed for making predictions
# (the predicts will need to be unnormalized and uncentered)
return means.ravel(), stds.ravel()
def setup(self, bottom, top):
self._anchors = generate_anchors(cfg.TRAIN.RPN_BASE_SIZE, cfg.TRAIN.RPN_ASPECTS, cfg.TRAIN.RPN_SCALES)
self._num_anchors = self._anchors.shape[0]
if DEBUG:
print 'anchors:'
print self._anchors
print 'anchor shapes:'
print np.hstack((
self._anchors[:, 2::4] - self._anchors[:, 0::4],
self._anchors[:, 3::4] - self._anchors[:, 1::4],
))
self._counts = cfg.EPS
self._sums = np.zeros((1, 4))
self._squared_sums = np.zeros((1, 4))
self._fg_sum = 0
self._bg_sum = 0
self._count = 0
layer_params = yaml.load(self.param_str_)
self._feat_stride = layer_params['feat_stride']
# allow boxes to sit over the edge by a small amount
self._allowed_border = layer_params.get('allowed_border', 0)
height, width = bottom[0].data.shape[-2:]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width
A = self._num_anchors
# labels
top[0].reshape(1, 1, A * height, width)
# bbox_targets
top[1].reshape(1, A * 4, height, width)
# bbox_inside_weights
top[2].reshape(1, A * 4, height, width)
# bbox_outside_weights
top[3].reshape(1, A * 4, height, width)
def setup(self, bottom, top):
self._anchors = generate_anchors()
self._num_anchors = self._anchors.shape[0]
if DEBUG:
print 'anchors:'
print self._anchors
print 'anchor shapes:'
print np.hstack((
self._anchors[:, 2::4] - self._anchors[:, 0::4],
self._anchors[:, 3::4] - self._anchors[:, 1::4],
))
self._counts = cfg.EPS
self._sums = np.zeros((1, 4))
self._squared_sums = np.zeros((1, 4))
self._fg_sum = 0
self._bg_sum = 0
self._count = 0
layer_params = yaml.load(self.param_str_)
self._feat_stride = layer_params['feat_stride']
# allow boxes to sit over the edge by a small amount
self._allowed_border = layer_params.get('allowed_border', 0)
height, width = bottom[0].data.shape[-2:]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width
A = self._num_anchors
# labels
top[0].reshape(1, 1, A * height, width)
# bbox_targets
top[1].reshape(1, A * 4, height, width)
# bbox_inside_weights
top[2].reshape(1, A * 4, height, width)
# bbox_outside_weights
top[3].reshape(1, A * 4, height, width)
def _bbox_pred(boxes, box_deltas):
"""Transform the set of class-agnostic boxes into class-specific boxes
by applying the predicted offsets (box_deltas)
"""
if boxes.shape[0] == 0:
return np.zeros((0, box_deltas.shape[1]))
boxes = boxes.astype(np.float, copy=False)
widths = boxes[:, 2] - boxes[:, 0] + cfg.EPS
heights = boxes[:, 3] - boxes[:, 1] + cfg.EPS
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
dx = box_deltas[:, 0::4]
dy = box_deltas[:, 1::4]
dw = box_deltas[:, 2::4]
dh = box_deltas[:, 3::4]
pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis]
pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis]
pred_w = np.exp(dw) * widths[:, np.newaxis]
pred_h = np.exp(dh) * heights[:, np.newaxis]
pred_boxes = np.zeros(box_deltas.shape)
# x1
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w
# y1
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h
# x2
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w
# y2
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h
return pred_boxes
def _bbox_pred(boxes, box_deltas):
"""Transform the set of class-agnostic boxes into class-specific boxes
by applying the predicted offsets (box_deltas)
"""
if boxes.shape[0] == 0:
return np.zeros((0, box_deltas.shape[1]))
boxes = boxes.astype(np.float, copy=False)
widths = boxes[:, 2] - boxes[:, 0] + cfg.EPS
heights = boxes[:, 3] - boxes[:, 1] + cfg.EPS
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
dx = box_deltas[:, 0::4]
dy = box_deltas[:, 1::4]
dw = box_deltas[:, 2::4]
dh = box_deltas[:, 3::4]
pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis]
pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis]
pred_w = np.exp(dw) * widths[:, np.newaxis]
pred_h = np.exp(dh) * heights[:, np.newaxis]
pred_boxes = np.zeros(box_deltas.shape)
# x1
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w
# y1
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h
# x2
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w
# y2
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h
return pred_boxes
def _bbox_pred(boxes, box_deltas):
"""Transform the set of class-agnostic boxes into class-specific boxes
by applying the predicted offsets (box_deltas)
"""
if boxes.shape[0] == 0:
return np.zeros((0, box_deltas.shape[1]))
boxes = boxes.astype(np.float, copy=False)
widths = boxes[:, 2] - boxes[:, 0] + cfg.EPS
heights = boxes[:, 3] - boxes[:, 1] + cfg.EPS
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
dx = box_deltas[:, 0::4]
dy = box_deltas[:, 1::4]
dw = box_deltas[:, 2::4]
dh = box_deltas[:, 3::4]
pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis]
pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis]
pred_w = np.exp(dw) * widths[:, np.newaxis]
pred_h = np.exp(dh) * heights[:, np.newaxis]
pred_boxes = np.zeros(box_deltas.shape)
# x1
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w
# y1
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h
# x2
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w
# y2
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h
return pred_boxes
def setup(self, bottom, top):
layer_params = yaml.load(self.param_str_)
anchor_scales = layer_params.get('scales', (8, 16, 32))
self._anchors = generate_anchors(scales=np.array(anchor_scales))
self._num_anchors = self._anchors.shape[0]
self._feat_stride = layer_params['feat_stride']
if DEBUG:
print 'anchors:'
print self._anchors
print 'anchor shapes:'
print np.hstack((
self._anchors[:, 2::4] - self._anchors[:, 0::4],
self._anchors[:, 3::4] - self._anchors[:, 1::4],
))
self._counts = cfg.EPS
self._sums = np.zeros((1, 4))
self._squared_sums = np.zeros((1, 4))
self._fg_sum = 0
self._bg_sum = 0
self._count = 0
# allow boxes to sit over the edge by a small amount
self._allowed_border = layer_params.get('allowed_border', 0)
height, width = bottom[0].data.shape[-2:]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width
A = self._num_anchors
# labels
top[0].reshape(1, 1, A * height, width)
# bbox_targets
top[1].reshape(1, A * 4, height, width)
# bbox_inside_weights
top[2].reshape(1, A * 4, height, width)
# bbox_outside_weights
top[3].reshape(1, A * 4, height, width)
anchor_target_layer.py 文件源码
项目:Faster_RCNN_Training_Toolkit
作者: VerseChow
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def setup(self, bottom, top):
layer_params = yaml.load(self.param_str_)
anchor_scales = layer_params.get('scales', (8, 16, 32))
self._anchors = generate_anchors(scales=np.array(anchor_scales))
self._num_anchors = self._anchors.shape[0]
self._feat_stride = layer_params['feat_stride']
if DEBUG:
print 'anchors:'
print self._anchors
print 'anchor shapes:'
print np.hstack((
self._anchors[:, 2::4] - self._anchors[:, 0::4],
self._anchors[:, 3::4] - self._anchors[:, 1::4],
))
self._counts = cfg.EPS
self._sums = np.zeros((1, 4))
self._squared_sums = np.zeros((1, 4))
self._fg_sum = 0
self._bg_sum = 0
self._count = 0
# allow boxes to sit over the edge by a small amount
self._allowed_border = layer_params.get('allowed_border', 0)
height, width = bottom[0].data.shape[-2:]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width
A = self._num_anchors
# labels
top[0].reshape(1, 1, A * height, width)
# bbox_targets
top[1].reshape(1, A * 4, height, width)
# bbox_inside_weights
top[2].reshape(1, A * 4, height, width)
# bbox_outside_weights
top[3].reshape(1, A * 4, height, width)
def setup(self, bottom, top):
self._anchors = generate_anchors()
self._num_anchors = self._anchors.shape[0]
if DEBUG:
print 'anchors:'
print self._anchors
print 'anchor shapes:'
print np.hstack((
self._anchors[:, 2::4] - self._anchors[:, 0::4],
self._anchors[:, 3::4] - self._anchors[:, 1::4],
))
self._counts = cfg.EPS
self._sums = np.zeros((1, 4))
self._squared_sums = np.zeros((1, 4))
self._fg_sum = 0
self._bg_sum = 0
self._count = 0
layer_params = yaml.load(self.param_str_)
self._feat_stride = layer_params['feat_stride']
# allow boxes to sit over the edge by a small amount
self._allowed_border = layer_params.get('allowed_border', 0)
height, width = bottom[0].data.shape[-2:]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width
A = self._num_anchors
# labels
top[0].reshape(1, 1, A * height, width)
# bbox_targets
top[1].reshape(1, A * 4, height, width)
# bbox_inside_weights
top[2].reshape(1, A * 4, height, width)
# bbox_outside_weights
top[3].reshape(1, A * 4, height, width)
def add_bbox_regression_targets(roidb):
"""Add information needed to train bounding-box regressors."""
assert len(roidb) > 0
assert 'info_boxes' in roidb[0], 'Did you call prepare_roidb first?'
num_images = len(roidb)
# Infer number of classes from the number of columns in gt_overlaps
num_classes = roidb[0]['gt_overlaps'].shape[1]
# Compute values needed for means and stds
# var(x) = E(x^2) - E(x)^2
class_counts = np.zeros((num_classes, 1)) + cfg.EPS
sums = np.zeros((num_classes, 4))
squared_sums = np.zeros((num_classes, 4))
for im_i in xrange(num_images):
targets = roidb[im_i]['info_boxes']
for cls in xrange(1, num_classes):
cls_inds = np.where(targets[:, 12] == cls)[0]
if cls_inds.size > 0:
class_counts[cls] += cls_inds.size
sums[cls, :] += targets[cls_inds, 14:].sum(axis=0)
squared_sums[cls, :] += (targets[cls_inds, 14:] ** 2).sum(axis=0)
means = sums / class_counts
stds = np.sqrt(squared_sums / class_counts - means ** 2)
# Normalize targets
for im_i in xrange(num_images):
targets = roidb[im_i]['info_boxes']
for cls in xrange(1, num_classes):
cls_inds = np.where(targets[:, 12] == cls)[0]
roidb[im_i]['info_boxes'][cls_inds, 14:] -= means[cls, :]
if stds[cls, 0] != 0:
roidb[im_i]['info_boxes'][cls_inds, 14:] /= stds[cls, :]
# These values will be needed for making predictions
# (the predicts will need to be unnormalized and uncentered)
return means.ravel(), stds.ravel()
def setup(self, bottom, top):
self._anchors = generate_anchors(cfg.TRAIN.RPN_BASE_SIZE, cfg.TRAIN.RPN_ASPECTS, cfg.TRAIN.RPN_SCALES)
self._num_anchors = self._anchors.shape[0]
if DEBUG:
print 'anchors:'
print self._anchors
print 'anchor shapes:'
print np.hstack((
self._anchors[:, 2::4] - self._anchors[:, 0::4],
self._anchors[:, 3::4] - self._anchors[:, 1::4],
))
self._counts = cfg.EPS
self._sums = np.zeros((1, 4))
self._squared_sums = np.zeros((1, 4))
self._fg_sum = 0
self._bg_sum = 0
self._count = 0
layer_params = yaml.load(self.param_str_)
self._feat_stride = layer_params['feat_stride']
# allow boxes to sit over the edge by a small amount
self._allowed_border = layer_params.get('allowed_border', 0)
height, width = bottom[0].data.shape[-2:]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width
A = self._num_anchors
# labels
top[0].reshape(1, 1, A * height, width)
# bbox_targets
top[1].reshape(1, A * 4, height, width)
# bbox_inside_weights
top[2].reshape(1, A * 4, height, width)
# bbox_outside_weights
top[3].reshape(1, A * 4, height, width)
def setup(self, bottom, top):
layer_params = yaml.load(self.param_str_)
anchor_scales = layer_params.get('scales', (8, 16, 32))
self._anchors = generate_anchors(scales=np.array(anchor_scales))
self._num_anchors = self._anchors.shape[0]
self._feat_stride = layer_params['feat_stride']
if DEBUG:
print 'anchors:'
print self._anchors
print 'anchor shapes:'
print np.hstack((
self._anchors[:, 2::4] - self._anchors[:, 0::4],
self._anchors[:, 3::4] - self._anchors[:, 1::4],
))
self._counts = cfg.EPS
self._sums = np.zeros((1, 4))
self._squared_sums = np.zeros((1, 4))
self._fg_sum = 0
self._bg_sum = 0
self._count = 0
# allow boxes to sit over the edge by a small amount
self._allowed_border = layer_params.get('allowed_border', 0)
height, width = bottom[0].data.shape[-2:]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width
A = self._num_anchors
# labels
top[0].reshape(1, 1, A * height, width)
# bbox_targets
top[1].reshape(1, A * 4, height, width)
# bbox_inside_weights
top[2].reshape(1, A * 4, height, width)
# bbox_outside_weights
top[3].reshape(1, A * 4, height, width)
anchor_target_layer.py 文件源码
项目:py-faster-rcnn-dockerface
作者: natanielruiz
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def setup(self, bottom, top):
layer_params = yaml.load(self.param_str)
anchor_scales = layer_params.get('scales', (8, 16, 32))
self._anchors = generate_anchors(scales=np.array(anchor_scales))
self._num_anchors = self._anchors.shape[0]
self._feat_stride = layer_params['feat_stride']
if DEBUG:
print 'anchors:'
print self._anchors
print 'anchor shapes:'
print np.hstack((
self._anchors[:, 2::4] - self._anchors[:, 0::4],
self._anchors[:, 3::4] - self._anchors[:, 1::4],
))
self._counts = cfg.EPS
self._sums = np.zeros((1, 4))
self._squared_sums = np.zeros((1, 4))
self._fg_sum = 0
self._bg_sum = 0
self._count = 0
# allow boxes to sit over the edge by a small amount
self._allowed_border = layer_params.get('allowed_border', 0)
height, width = bottom[0].data.shape[-2:]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width
A = self._num_anchors
# labels
top[0].reshape(1, 1, A * height, width)
# bbox_targets
top[1].reshape(1, A * 4, height, width)
# bbox_inside_weights
top[2].reshape(1, A * 4, height, width)
# bbox_outside_weights
top[3].reshape(1, A * 4, height, width)
def add_bbox_regression_targets(roidb):
"""Add information needed to train bounding-box regressors."""
assert len(roidb) > 0
assert 'info_boxes' in roidb[0], 'Did you call prepare_roidb first?'
num_images = len(roidb)
# Infer number of classes from the number of columns in gt_overlaps
num_classes = roidb[0]['gt_overlaps'].shape[1]
# Compute values needed for means and stds
# var(x) = E(x^2) - E(x)^2
class_counts = np.zeros((num_classes, 1)) + cfg.EPS
sums = np.zeros((num_classes, 4))
squared_sums = np.zeros((num_classes, 4))
for im_i in xrange(num_images):
targets = roidb[im_i]['info_boxes']
for cls in xrange(1, num_classes):
cls_inds = np.where(targets[:, 12] == cls)[0]
if cls_inds.size > 0:
class_counts[cls] += cls_inds.size
sums[cls, :] += targets[cls_inds, 14:].sum(axis=0)
squared_sums[cls, :] += (targets[cls_inds, 14:] ** 2).sum(axis=0)
means = sums / class_counts
stds = np.sqrt(squared_sums / class_counts - means ** 2)
# Normalize targets
for im_i in xrange(num_images):
targets = roidb[im_i]['info_boxes']
for cls in xrange(1, num_classes):
cls_inds = np.where(targets[:, 12] == cls)[0]
roidb[im_i]['info_boxes'][cls_inds, 14:] -= means[cls, :]
if stds[cls, 0] != 0:
roidb[im_i]['info_boxes'][cls_inds, 14:] /= stds[cls, :]
# These values will be needed for making predictions
# (the predicts will need to be unnormalized and uncentered)
return means.ravel(), stds.ravel()