python类ROOT_DIR的实例源码

train_faster_rcnn_alt_opt.py 文件源码 项目:py-faster-rcnn-tk1 作者: joeking11829 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.ROOT_DIR, 'models', *s) for s in solvers]
    # Iterations for each training stage
    max_iters = [80000, 40000, 80000, 40000]
    # max_iters = [100, 100, 100, 100]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.ROOT_DIR, 'models', net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
train_faster_rcnn_alt_opt.py 文件源码 项目:TattDL 作者: z-harry-sun 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.ROOT_DIR, 'models', *s) for s in solvers]
    # Iterations for each training stage
    max_iters = [80000, 40000, 80000, 40000]
    # max_iters = [100, 100, 100, 100]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.ROOT_DIR, 'models', net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
vis_fasterRCNN.py 文件源码 项目:KITTI-detection-OHEM 作者: manutdzou 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def visualization_plus(net, layer_name, save_dir):
    save_path = os.path.join(cfg.ROOT_DIR, 'visualization_plus', save_dir) 
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    feat = net.blobs[layer_name].data[0]
    fm = feat[0]
    print type(fm)

    print fm.shape
    for f in feat:
        fm += f
    fm = fm - feat[0]

    print 'fm  max = {}, min = {}'.format(fm.max(), fm.min())
    #fm -= fm.min()
    #fm /= fm.max()

    fm *=255
    i = 0
    cv2.imwrite(os.path.join(save_path, '{:s}.png'.format(layer_name)), fm)
train_debug.py 文件源码 项目:KITTI-detection-OHEM 作者: manutdzou 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
    solvers = [os.path.join(cfg.ROOT_DIR, 'models', *s) for s in solvers]
    # Iterations for each training stage
    #max_iters = [80000, 40000, 80000, 40000]
    max_iters = [40, 40, 40, 40]
    #Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.ROOT_DIR, 'models', net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
train_faster_rcnn_alt_opt.py 文件源码 项目:KITTI-detection-OHEM 作者: manutdzou 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_solvers(net_name):
    # Faster R-CNN Alternating Optimization
    n = 'faster_rcnn_alt_opt'
    # Solver for each training stage
    solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
               [net_name, n, 'stage1_fast_rcnn_ohem_solver30k40k.pt'],
               [net_name, n, 'stage2_rpn_solver60k80k.pt'],
               [net_name, n, 'stage2_fast_rcnn_ohem_solver30k40k.pt']]
    solvers = [os.path.join(cfg.ROOT_DIR, 'models', *s) for s in solvers]
    #Iterations for each training stage
    max_iters = [80000, 40000, 80000, 10000]
    #max_iters = [50, 50, 50, 50]
    # Test prototxt for the RPN
    rpn_test_prototxt = os.path.join(
        cfg.ROOT_DIR, 'models', net_name, n, 'rpn_test.pt')
    return solvers, max_iters, rpn_test_prototxt

# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
feature.py 文件源码 项目:QScode 作者: PierreHao 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def init_detection_net(self, gpu_id=0, prototxt=None, caffemodel=None):
        """init extraction network"""
        cfg.TEST.HAS_RPN = True  # Use RPN for proposals
        if prototxt is None:
            prototxt = os.path.join(cfg.ROOT_DIR, 'models', NETS['zf'][0],
                            'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
        if caffemodel is None:
            caffemodel = os.path.join(cfg.ROOT_DIR, 'output/default/train',
                              NETS['zf'][1])

        if not os.path.isfile(caffemodel):
            raise IOError(('{:s} not found.\nDid you run ./data/script/'
                       'fetch_faster_rcnn_models.sh?').format(caffemodel))

        #np.random.seed(cfg.RNG_SEED)
        caffe.set_random_seed(cfg.RNG_SEED)       
        caffe.set_mode_gpu()
        caffe.set_device(gpu_id)        
        self.net_d = caffe.Net(prototxt, caffemodel, caffe.TEST)
pascal_voc.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def _do_matlab_eval(self, output_dir='output'):
        print '-----------------------------------------------------'
        print 'Computing results with the official MATLAB eval code.'
        print '-----------------------------------------------------'
        path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
                            'VOCdevkit-matlab-wrapper')
        cmd = 'cd {} && '.format(path)
        cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
        cmd += '-r "dbstop if error; '
        cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
               .format(self._devkit_path, self._get_comp_id(),
                       self._image_set, output_dir)
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)
demo.py 文件源码 项目:fast-rcnn-distillation 作者: xiaolonw 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def demo(net, image_name, classes):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load pre-computed Selected Search object proposals
    box_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo',
                            image_name + '_boxes.mat')
    obj_proposals = sio.loadmat(box_file)['boxes']

    # Load the demo image
    im_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo', image_name + '.jpg')
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(net, im, obj_proposals)
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls in classes:
        cls_ind = CLASSES.index(cls)
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        print 'All {} detections with p({} | box) >= {:.1f}'.format(cls, cls,
                                                                    CONF_THRESH)
        vis_detections(im, cls, dets, thresh=CONF_THRESH)
pascal_voc.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _do_matlab_eval(self, output_dir='output'):
        print '-----------------------------------------------------'
        print 'Computing results with the official MATLAB eval code.'
        print '-----------------------------------------------------'
        path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
                            'VOCdevkit-matlab-wrapper')
        cmd = 'cd {} && '.format(path)
        cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
        cmd += '-r "dbstop if error; '
        cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
               .format(self._devkit_path, self._get_comp_id(),
                       self._image_set, output_dir)
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)
demo.py 文件源码 项目:py-faster-rcnn-tk1 作者: joeking11829 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def demo(net, image_name):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image
    im_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo', image_name)
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(net, im)
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls_ind, cls in enumerate(CLASSES[1:]):
        cls_ind += 1 # because we skipped background
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        vis_detections(im, cls, dets, thresh=CONF_THRESH)
pascal_voc.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _do_matlab_eval(self, output_dir='output'):
        print '-----------------------------------------------------'
        print 'Computing results with the official MATLAB eval code.'
        print '-----------------------------------------------------'
        path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
                            'VOCdevkit-matlab-wrapper')
        cmd = 'cd {} && '.format(path)
        cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
        cmd += '-r "dbstop if error; '
        cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
               .format(self._devkit_path, self._get_comp_id(),
                       self._image_set, output_dir)
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)
imagenet.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _do_matlab_eval(self, output_dir='output'):
        print '-----------------------------------------------------'
        print 'Computing results with the official MATLAB eval code.'
        print '-----------------------------------------------------'
        path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
                            'VOCdevkit-matlab-wrapper')
        cmd = 'cd {} && '.format(path)
        cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
        cmd += '-r "dbstop if error; '
        cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
               .format(self._devkit_path, self._get_comp_id(),
                       self._image_set, output_dir)
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)
pascal_voc.py 文件源码 项目:chainer-faster-rcnn 作者: mitmul 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _do_matlab_eval(self, output_dir='output'):
        print '-----------------------------------------------------'
        print 'Computing results with the official MATLAB eval code.'
        print '-----------------------------------------------------'
        path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
                            'VOCdevkit-matlab-wrapper')
        cmd = 'cd {} && '.format(path)
        cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
        cmd += '-r "dbstop if error; '
        cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
               .format(self._devkit_path, self._get_comp_id(),
                       self._image_set, output_dir)
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)
pascal_voc.py 文件源码 项目:face-py-faster-rcnn 作者: playerkk 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _do_matlab_eval(self, output_dir='output'):
        print '-----------------------------------------------------'
        print 'Computing results with the official MATLAB eval code.'
        print '-----------------------------------------------------'
        path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
                            'VOCdevkit-matlab-wrapper')
        cmd = 'cd {} && '.format(path)
        cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
        cmd += '-r "dbstop if error; '
        cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
               .format(self._devkit_path, self._get_comp_id(),
                       self._image_set, output_dir)
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)
pascal_voc.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _do_matlab_eval(self, output_dir='output'):
        print '-----------------------------------------------------'
        print 'Computing results with the official MATLAB eval code.'
        print '-----------------------------------------------------'
        path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
                            'VOCdevkit-matlab-wrapper')
        cmd = 'cd {} && '.format(path)
        cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
        cmd += '-r "dbstop if error; '
        cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
               .format(self._devkit_path, self._get_comp_id(),
                       self._image_set, output_dir)
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)
pascal_voc.py 文件源码 项目:deep-fashion 作者: zuowang 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def _do_matlab_eval(self, output_dir='output'):
        print '-----------------------------------------------------'
        print 'Computing results with the official MATLAB eval code.'
        print '-----------------------------------------------------'
        path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
                            'VOCdevkit-matlab-wrapper')
        cmd = 'cd {} && '.format(path)
        cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
        cmd += '-r "dbstop if error; '
        cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
               .format(self._devkit_path, self._get_comp_id(),
                       self._image_set, output_dir)
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)
pascal_voc.py 文件源码 项目:RPN 作者: hfut721 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _do_matlab_eval(self, output_dir='output'):
        print '-----------------------------------------------------'
        print 'Computing results with the official MATLAB eval code.'
        print '-----------------------------------------------------'
        path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
                            'VOCdevkit-matlab-wrapper')
        cmd = 'cd {} && '.format(path)
        cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
        cmd += '-r "dbstop if error; '
        cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
               .format(self._devkit_path, self._get_comp_id(),
                       self._image_set, output_dir)
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)
pascal_voc.py 文件源码 项目:oicr 作者: ppengtang 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _get_default_path(self):
        """
        Return the default path where PASCAL VOC is expected to be installed.
        """
        return os.path.join(datasets.ROOT_DIR, 'data', 'VOCdevkit' + self._year)
pascal_voc.py 文件源码 项目:oicr 作者: ppengtang 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def _do_matlab_eval(self, output_dir='output'):
        print '-----------------------------------------------------'
        print 'Computing results with the official MATLAB eval code.'
        print '-----------------------------------------------------'
        path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
                            'VOCdevkit-matlab-wrapper')
        cmd = 'cd {} && '.format(path)
        cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
        cmd += '-r "dbstop if error; '
        cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
               .format(self._devkit_path, self._get_comp_id(),
                       self._image_set, output_dir)
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)
pascal_voc.py 文件源码 项目:Faster-RCNN_TF 作者: smallcorgi 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _do_matlab_eval(self, output_dir='output'):
        print '-----------------------------------------------------'
        print 'Computing results with the official MATLAB eval code.'
        print '-----------------------------------------------------'
        path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
                            'VOCdevkit-matlab-wrapper')
        cmd = 'cd {} && '.format(path)
        cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
        cmd += '-r "dbstop if error; '
        cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
               .format(self._devkit_path, self._get_comp_id(),
                       self._image_set, output_dir)
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)
demo.py 文件源码 项目:TattDL 作者: z-harry-sun 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def demo(net, image_name):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image
    im_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo', image_name)
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(net, im)
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls_ind, cls in enumerate(CLASSES[1:]):
        cls_ind += 1 # because we skipped background
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        vis_detections(im, cls, dets, thresh=CONF_THRESH)
demo.py 文件源码 项目:CRAFT 作者: byangderek 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def demo(net, image_name, classes):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load pre-computed Selected Search object proposals
    box_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo',
                            image_name + '_boxes.mat')
    obj_proposals = sio.loadmat(box_file)['boxes']

    # Load the demo image
    im_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo', image_name + '.jpg')
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(net, im, obj_proposals)
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls in classes:
        cls_ind = CLASSES.index(cls)
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        print 'All {} detections with p({} | box) >= {:.1f}'.format(cls, cls,
                                                                    CONF_THRESH)
        vis_detections(im, cls, dets, thresh=CONF_THRESH)
demo.py 文件源码 项目:CRAFT 作者: byangderek 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def demo(net, image_name, classes):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load pre-computed Selected Search object proposals
    box_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo',
                            image_name + '_boxes.mat')
    obj_proposals = sio.loadmat(box_file)['boxes']

    # Load the demo image
    im_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo', image_name + '.jpg')
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(net, im, obj_proposals)
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls in classes:
        cls_ind = CLASSES.index(cls)
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        print 'All {} detections with p({} | box) >= {:.1f}'.format(cls, cls,
                                                                    CONF_THRESH)
        vis_detections(im, cls, dets, thresh=CONF_THRESH)
demo.py 文件源码 项目:CRAFT 作者: byangderek 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def demo(net, image_name, classes):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load pre-computed Selected Search object proposals
    box_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo',
                            image_name + '_boxes.mat')
    obj_proposals = sio.loadmat(box_file)['boxes']

    # Load the demo image
    im_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo', image_name + '.jpg')
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(net, im, obj_proposals)
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls in classes:
        cls_ind = CLASSES.index(cls)
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        print 'All {} detections with p({} | box) >= {:.1f}'.format(cls, cls,
                                                                    CONF_THRESH)
        vis_detections(im, cls, dets, thresh=CONF_THRESH)
pascal_voc.py 文件源码 项目:faster_rcnn_logo 作者: romyny 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _do_matlab_eval(self, output_dir='output'):
        print '-----------------------------------------------------'
        print 'Computing results with the official MATLAB eval code.'
        print '-----------------------------------------------------'
        path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
                            'VOCdevkit-matlab-wrapper')
        cmd = 'cd {} && '.format(path)
        cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
        cmd += '-r "dbstop if error; '
        cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
               .format(self._devkit_path, self._get_comp_id(),
                       self._image_set, output_dir)
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)
progress.py 文件源码 项目:Faster_RCNN_Training_Toolkit 作者: VerseChow 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _do_matlab_eval(self, output_dir='output'):
        print '-----------------------------------------------------'
        print 'Computing results with the official MATLAB eval code.'
        print '-----------------------------------------------------'
        path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
                            'VOCdevkit-matlab-wrapper')
        cmd = 'cd {} && '.format(path)
        cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
        cmd += '-r "dbstop if error; '
        cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
               .format(self._devkit_path, self._get_comp_id(),
                       self._image_set, output_dir)
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)
vis_fasterRCNN.py 文件源码 项目:KITTI-detection-OHEM 作者: manutdzou 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def visualization(net, layer_name, save_dir):
    save_path = os.path.join(cfg.ROOT_DIR, 'visualization', save_dir, layer_name) 
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    feat = net.blobs[layer_name].data[0]
    print feat.shape
    feat -= feat.min()
    feat /= feat.max()
    feat *=255
    i = 0
    for im in feat:
        #iFColor = FColor(im)
        cv2.imwrite(os.path.join(save_path, '{:d}.png'.format(i)), im)
        i = i + 1
    #vis_square(feat, padval=1)
demo_location.py 文件源码 项目:KITTI-detection-OHEM 作者: manutdzou 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def demo(net, dir_name, image_name):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image
    im_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo','test',dir_name, image_name)
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(net, im)
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls_ind, cls in enumerate(CLASSES[1:]):
        cls_ind += 1 # because we skipped background
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        vis_detections(im, cls, dets, dir_name, image_name, thresh=CONF_THRESH)
pascal_voc.py 文件源码 项目:FastRcnnDetect 作者: karthkk 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _do_matlab_eval(self, output_dir='output'):
        print '-----------------------------------------------------'
        print 'Computing results with the official MATLAB eval code.'
        print '-----------------------------------------------------'
        path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
                            'VOCdevkit-matlab-wrapper')
        cmd = 'cd {} && '.format(path)
        cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
        cmd += '-r "dbstop if error; '
        cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
               .format(self._devkit_path, self._get_comp_id(),
                       self._image_set, output_dir)
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)
pascal_voc.py 文件源码 项目:ohem 作者: abhi2610 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _do_matlab_eval(self, output_dir='output'):
        print '-----------------------------------------------------'
        print 'Computing results with the official MATLAB eval code.'
        print '-----------------------------------------------------'
        path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
                            'VOCdevkit-matlab-wrapper')
        cmd = 'cd {} && '.format(path)
        cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
        cmd += '-r "dbstop if error; '
        cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
               .format(self._devkit_path, self._get_comp_id(),
                       self._image_set, output_dir)
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)


问题


面经


文章

微信
公众号

扫码关注公众号