def _init_caffe(cfg):
"""Initialize pycaffe in a training process.
"""
import caffe
# fix the random seeds (numpy and caffe) for reproducibility
np.random.seed(cfg.RNG_SEED)
caffe.set_random_seed(cfg.RNG_SEED)
# set up caffe
caffe.set_mode_gpu()
caffe.set_device(cfg.GPU_ID)
python类GPU_ID的实例源码
train_faster_rcnn_alt_opt_doubledb.py 文件源码
项目:py-faster-rcnn-dockerface
作者: natanielruiz
项目源码
文件源码
阅读 29
收藏 0
点赞 0
评论 0
train_faster_rcnn_alt_opt.py 文件源码
项目:py-faster-rcnn-dockerface
作者: natanielruiz
项目源码
文件源码
阅读 31
收藏 0
点赞 0
评论 0
def _init_caffe(cfg):
"""Initialize pycaffe in a training process.
"""
import caffe
# fix the random seeds (numpy and caffe) for reproducibility
np.random.seed(cfg.RNG_SEED)
caffe.set_random_seed(cfg.RNG_SEED)
# set up caffe
caffe.set_mode_gpu()
caffe.set_device(cfg.GPU_ID)
def nms(dets, thresh, force_cpu=False):
"""Dispatch to either CPU or GPU NMS implementations."""
if dets.shape[0] == 0:
return []
if cfg.USE_GPU_NMS and not force_cpu:
return gpu_nms(dets, thresh, device_id=cfg.GPU_ID)
else:
return cpu_nms(dets, thresh)
def nms(dets, thresh, force_cpu=False):
"""Dispatch to either CPU or GPU NMS implementations."""
if dets.shape[0] == 0:
return []
if cfg.USE_GPU_NMS and not force_cpu:
from nms.gpu_nms import gpu_nms
return gpu_nms(dets, thresh, device_id=cfg.GPU_ID)
else:
from nms.cpu_nms import cpu_nms
return cpu_nms(dets, thresh)
def nms(dets, thresh, force_cpu=False):
"""Dispatch to either CPU or GPU NMS implementations."""
if dets.shape[0] == 0:
return []
if cfg.USE_GPU_NMS and not force_cpu:
return gpu_nms(dets, thresh, device_id=cfg.GPU_ID)
else:
return cpu_nms(dets, thresh)
def _init_caffe(cfg):
"""Initialize pycaffe in a training process.
"""
import caffe
# fix the random seeds (numpy and caffe) for reproducibility
np.random.seed(cfg.RNG_SEED)
caffe.set_random_seed(cfg.RNG_SEED)
# set up caffe
caffe.set_mode_gpu()
caffe.set_device(cfg.GPU_ID)
def gpu_conf(cfg, gpu_id=None):
if gpu_id==None:
DEVICE_ID_LIST = GPUtil.getFirstAvailable()
if (len(DEVICE_ID_LIST) > 0):
cfg.GPU_ID = DEVICE_ID_LIST[0] # grab first element from list
else:
cfg.GPU_ID=gpu_id
return cfg
def _init_caffe(cfg):
"""Initialize pycaffe in a training process.
"""
import caffe
# fix the random seeds (numpy and caffe) for reproducibility
np.random.seed(cfg.RNG_SEED)
caffe.set_random_seed(cfg.RNG_SEED)
# set up caffe
caffe.set_mode_gpu()
caffe.set_device(cfg.GPU_ID)
def _init_caffe(cfg):
"""Initialize pycaffe in a training process.
"""
import caffe
# fix the random seeds (numpy and caffe) for reproducibility
np.random.seed(cfg.RNG_SEED)
caffe.set_random_seed(cfg.RNG_SEED)
# set up caffe
caffe.set_mode_gpu()
caffe.set_device(cfg.GPU_ID)
def _init_caffe(cfg):
"""Initialize pycaffe in a training process.
"""
import caffe
# fix the random seeds (numpy and caffe) for reproducibility
np.random.seed(cfg.RNG_SEED)
caffe.set_random_seed(cfg.RNG_SEED)
# set up caffe
caffe.set_mode_gpu()
caffe.set_device(cfg.GPU_ID)
def build_net():
prototxt = os.path.join(cfg.ROOT_DIR, 'models',
NETS[args.demo_net][0], 'faster_rcnn_alt_opt',
'faster_rcnn_test.pt')
caffemodel = os.path.join(cfg.ROOT_DIR, 'data',
'faster_rcnn_models', NETS[args.demo_net][1])
caffe.set_mode_gpu()
caffe.set_device(args.gpu_id)
cfg.GPU_ID = args.gpu_id
net = caffe.Net(prototxt, caffemodel, caffe.TEST)
return net
def build_net():
prototxt = os.path.join(cfg.ROOT_DIR, 'models',
NETS[args.demo_net][0], 'faster_rcnn_alt_opt',
'faster_rcnn_test.pt')
caffemodel = os.path.join(cfg.ROOT_DIR, 'data',
'faster_rcnn_models', NETS[args.demo_net][1])
caffe.set_mode_gpu()
caffe.set_device(args.gpu_id)
cfg.GPU_ID = args.gpu_id
net = caffe.Net(prototxt, caffemodel, caffe.TEST)
return net
def nms(dets, thresh, force_cpu=False):
"""Dispatch to either CPU or GPU NMS implementations."""
if dets.shape[0] == 0:
return []
if cfg.USE_GPU_NMS and not force_cpu:
return gpu_nms(dets, thresh, device_id=cfg.GPU_ID)
else:
return cpu_nms(dets, thresh)
def _init_caffe(cfg):
"""Initialize pycaffe in a training process.
"""
import caffe
# fix the random seeds (numpy and caffe) for reproducibility
np.random.seed(cfg.RNG_SEED)
caffe.set_random_seed(cfg.RNG_SEED)
# set up caffe
caffe.set_mode_gpu()
caffe.set_device(cfg.GPU_ID)
def nms(dets, thresh, force_cpu=False):
"""Dispatch to either CPU or GPU NMS implementations."""
if dets.shape[0] == 0:
return []
if cfg.USE_GPU_NMS and not force_cpu:
return gpu_nms(dets, thresh, device_id=cfg.GPU_ID)
else:
return cpu_nms(dets, thresh)
def nms(dets, thresh, force_cpu=False):
"""Dispatch to either CPU or GPU NMS implementations."""
if dets.shape[0] == 0:
return []
if cfg.USE_GPU_NMS and not force_cpu:
return gpu_nms(dets, thresh, device_id=cfg.GPU_ID)
else:
return cpu_nms(dets, thresh)
def _init_caffe(cfg):
"""Initialize pycaffe in a training process.
"""
import caffe
# fix the random seeds (numpy and caffe) for reproducibility
np.random.seed(cfg.RNG_SEED)
caffe.set_random_seed(cfg.RNG_SEED)
# set up caffe
caffe.set_mode_gpu()
caffe.set_device(cfg.GPU_ID)
def _init_caffe(cfg):
"""Initialize pycaffe in a training process.
"""
import caffe
# fix the random seeds (numpy and caffe) for reproducibility
np.random.seed(cfg.RNG_SEED)
caffe.set_random_seed(cfg.RNG_SEED)
# set up caffe
caffe.set_mode_gpu()
caffe.set_device(cfg.GPU_ID)
def nms(dets, thresh):
"""Dispatch to either CPU or GPU NMS implementations."""
if dets.shape[0] == 0:
return []
if cfg.USE_GPU_NMS:
return gpu_nms(dets, thresh, device_id=cfg.GPU_ID)
else:
return cpu_nms(dets, thresh)
def nms(dets, thresh, force_cpu=False):
"""Dispatch to either CPU or GPU NMS implementations."""
if dets.shape[0] == 0:
return []
if cfg.USE_GPU_NMS and not force_cpu:
return gpu_nms(dets, thresh, device_id=cfg.GPU_ID)
else:
return cpu_nms(dets, thresh)