python类RNG_SEED的实例源码

train_svms.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:fast-rcnn-distillation 作者: xiaolonw 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:py-faster-rcnn-tk1 作者: joeking11829 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:face-py-faster-rcnn 作者: playerkk 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:deep-fashion 作者: zuowang 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:RPN 作者: hfut721 项目源码 文件源码 阅读 62 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:TattDL 作者: z-harry-sun 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:CRAFT 作者: byangderek 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:CRAFT 作者: byangderek 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:faster_rcnn_logo 作者: romyny 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:Faster_RCNN_Training_Toolkit 作者: VerseChow 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:KITTI-detection-OHEM 作者: manutdzou 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:ohem 作者: abhi2610 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:py-faster-rcnn-dockerface 作者: natanielruiz 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:PVANet-FACE 作者: twmht 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:CAPTCHA_Identifier 作者: AlphaLFC 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:SubCNN 作者: tanshen 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
feature.py 文件源码 项目:QScode 作者: PierreHao 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def init_detection_net(self, gpu_id=0, prototxt=None, caffemodel=None):
        """init extraction network"""
        cfg.TEST.HAS_RPN = True  # Use RPN for proposals
        if prototxt is None:
            prototxt = os.path.join(cfg.ROOT_DIR, 'models', NETS['zf'][0],
                            'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
        if caffemodel is None:
            caffemodel = os.path.join(cfg.ROOT_DIR, 'output/default/train',
                              NETS['zf'][1])

        if not os.path.isfile(caffemodel):
            raise IOError(('{:s} not found.\nDid you run ./data/script/'
                       'fetch_faster_rcnn_models.sh?').format(caffemodel))

        #np.random.seed(cfg.RNG_SEED)
        caffe.set_random_seed(cfg.RNG_SEED)       
        caffe.set_mode_gpu()
        caffe.set_device(gpu_id)        
        self.net_d = caffe.Net(prototxt, caffemodel, caffe.TEST)
train_svms.py 文件源码 项目:lsi-faster-rcnn 作者: cguindel 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
layer.py 文件源码 项目:dpl 作者: ppengtang 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, queue, roidb, num_classes):
        super(BlobFetcher, self).__init__()
        self._queue = queue
        self._roidb = roidb
        self._num_classes = num_classes
        self._perm = None
        self._cur = 0
        self._shuffle_roidb_inds()
        # fix the random seed for reproducibility
        np.random.seed(cfg.RNG_SEED)
layer.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __init__(self, queue, roidb, num_classes):
        super(BlobFetcher, self).__init__()
        self._queue = queue
        self._roidb = roidb
        self._num_classes = num_classes
        self._perm = None
        self._cur = 0
        self._shuffle_roidb_inds()
        # fix the random seed for reproducibility
        np.random.seed(cfg.RNG_SEED)
train_faster_rcnn_alt_opt.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _init_caffe(cfg):
    """Initialize pycaffe in a training process.
    """

    import caffe
    # fix the random seeds (numpy and caffe) for reproducibility
    np.random.seed(cfg.RNG_SEED)
    caffe.set_random_seed(cfg.RNG_SEED)
    # set up caffe
    caffe.set_mode_gpu()
    caffe.set_device(cfg.GPU_ID)
layer.py 文件源码 项目:fast-rcnn-distillation 作者: xiaolonw 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def __init__(self, queue, roidb, num_classes):
        super(BlobFetcher, self).__init__()
        self._queue = queue
        self._roidb = roidb
        self._num_classes = num_classes
        self._perm = None
        self._cur = 0
        self._shuffle_roidb_inds()
        # fix the random seed for reproducibility
        np.random.seed(cfg.RNG_SEED)
layer_pi.py 文件源码 项目:fast-rcnn-distillation 作者: xiaolonw 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, queue, roidb, num_classes):
        super(BlobFetcher, self).__init__()
        self._queue = queue
        self._roidb = roidb
        self._num_classes = num_classes
        self._perm = None
        self._cur = 0
        self._shuffle_roidb_inds()
        # fix the random seed for reproducibility
        np.random.seed(cfg.RNG_SEED)
layer.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def __init__(self, queue, roidb, num_classes):
        super(BlobFetcher, self).__init__()
        self._queue = queue
        self._roidb = roidb
        self._num_classes = num_classes
        self._perm = None
        self._cur = 0
        self._shuffle_roidb_inds()
        # fix the random seed for reproducibility
        np.random.seed(cfg.RNG_SEED)
train_faster_rcnn_alt_opt.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _init_caffe(cfg):
    """Initialize pycaffe in a training process.
    """

    import caffe
    # fix the random seeds (numpy and caffe) for reproducibility
    np.random.seed(cfg.RNG_SEED)
    caffe.set_random_seed(cfg.RNG_SEED)
    # set up caffe
    caffe.set_mode_gpu()
    caffe.set_device(cfg.GPU_ID)
layer.py 文件源码 项目:py-faster-rcnn-tk1 作者: joeking11829 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __init__(self, queue, roidb, num_classes):
        super(BlobFetcher, self).__init__()
        self._queue = queue
        self._roidb = roidb
        self._num_classes = num_classes
        self._perm = None
        self._cur = 0
        self._shuffle_roidb_inds()
        # fix the random seed for reproducibility
        np.random.seed(cfg.RNG_SEED)
train_faster_rcnn_alt_opt.py 文件源码 项目:py-faster-rcnn-tk1 作者: joeking11829 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _init_caffe(cfg):
    """Initialize pycaffe in a training process.
    """

    import caffe
    # fix the random seeds (numpy and caffe) for reproducibility
    np.random.seed(cfg.RNG_SEED)
    caffe.set_random_seed(cfg.RNG_SEED)
    # set up caffe
    caffe.set_mode_gpu()
    caffe.set_device(cfg.GPU_ID)


问题


面经


文章

微信
公众号

扫码关注公众号