def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
python类RNG_SEED的实例源码
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def init_detection_net(self, gpu_id=0, prototxt=None, caffemodel=None):
"""init extraction network"""
cfg.TEST.HAS_RPN = True # Use RPN for proposals
if prototxt is None:
prototxt = os.path.join(cfg.ROOT_DIR, 'models', NETS['zf'][0],
'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
if caffemodel is None:
caffemodel = os.path.join(cfg.ROOT_DIR, 'output/default/train',
NETS['zf'][1])
if not os.path.isfile(caffemodel):
raise IOError(('{:s} not found.\nDid you run ./data/script/'
'fetch_faster_rcnn_models.sh?').format(caffemodel))
#np.random.seed(cfg.RNG_SEED)
caffe.set_random_seed(cfg.RNG_SEED)
caffe.set_mode_gpu()
caffe.set_device(gpu_id)
self.net_d = caffe.Net(prototxt, caffemodel, caffe.TEST)
def __init__(self, cls, dim, feature_scale=1.0,
C=0.001, B=10.0, pos_weight=2.0):
self.pos = np.zeros((0, dim), dtype=np.float32)
self.neg = np.zeros((0, dim), dtype=np.float32)
self.B = B
self.C = C
self.cls = cls
self.pos_weight = pos_weight
self.dim = dim
self.feature_scale = feature_scale
self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
intercept_scaling=B, verbose=1,
penalty='l2', loss='l1',
random_state=cfg.RNG_SEED, dual=True)
self.pos_cur = 0
self.num_neg_added = 0
self.retrain_limit = 2000
self.evict_thresh = -1.1
self.loss_history = []
def __init__(self, queue, roidb, num_classes):
super(BlobFetcher, self).__init__()
self._queue = queue
self._roidb = roidb
self._num_classes = num_classes
self._perm = None
self._cur = 0
self._shuffle_roidb_inds()
# fix the random seed for reproducibility
np.random.seed(cfg.RNG_SEED)
def __init__(self, queue, roidb, num_classes):
super(BlobFetcher, self).__init__()
self._queue = queue
self._roidb = roidb
self._num_classes = num_classes
self._perm = None
self._cur = 0
self._shuffle_roidb_inds()
# fix the random seed for reproducibility
np.random.seed(cfg.RNG_SEED)
def _init_caffe(cfg):
"""Initialize pycaffe in a training process.
"""
import caffe
# fix the random seeds (numpy and caffe) for reproducibility
np.random.seed(cfg.RNG_SEED)
caffe.set_random_seed(cfg.RNG_SEED)
# set up caffe
caffe.set_mode_gpu()
caffe.set_device(cfg.GPU_ID)
def __init__(self, queue, roidb, num_classes):
super(BlobFetcher, self).__init__()
self._queue = queue
self._roidb = roidb
self._num_classes = num_classes
self._perm = None
self._cur = 0
self._shuffle_roidb_inds()
# fix the random seed for reproducibility
np.random.seed(cfg.RNG_SEED)
def __init__(self, queue, roidb, num_classes):
super(BlobFetcher, self).__init__()
self._queue = queue
self._roidb = roidb
self._num_classes = num_classes
self._perm = None
self._cur = 0
self._shuffle_roidb_inds()
# fix the random seed for reproducibility
np.random.seed(cfg.RNG_SEED)
def __init__(self, queue, roidb, num_classes):
super(BlobFetcher, self).__init__()
self._queue = queue
self._roidb = roidb
self._num_classes = num_classes
self._perm = None
self._cur = 0
self._shuffle_roidb_inds()
# fix the random seed for reproducibility
np.random.seed(cfg.RNG_SEED)
train_faster_rcnn_alt_opt.py 文件源码
项目:faster-rcnn-resnet
作者: Eniac-Xie
项目源码
文件源码
阅读 28
收藏 0
点赞 0
评论 0
def _init_caffe(cfg):
"""Initialize pycaffe in a training process.
"""
import caffe
# fix the random seeds (numpy and caffe) for reproducibility
np.random.seed(cfg.RNG_SEED)
caffe.set_random_seed(cfg.RNG_SEED)
# set up caffe
caffe.set_mode_gpu()
caffe.set_device(cfg.GPU_ID)
def __init__(self, queue, roidb, num_classes):
super(BlobFetcher, self).__init__()
self._queue = queue
self._roidb = roidb
self._num_classes = num_classes
self._perm = None
self._cur = 0
self._shuffle_roidb_inds()
# fix the random seed for reproducibility
np.random.seed(cfg.RNG_SEED)
train_faster_rcnn_alt_opt.py 文件源码
项目:py-faster-rcnn-tk1
作者: joeking11829
项目源码
文件源码
阅读 33
收藏 0
点赞 0
评论 0
def _init_caffe(cfg):
"""Initialize pycaffe in a training process.
"""
import caffe
# fix the random seeds (numpy and caffe) for reproducibility
np.random.seed(cfg.RNG_SEED)
caffe.set_random_seed(cfg.RNG_SEED)
# set up caffe
caffe.set_mode_gpu()
caffe.set_device(cfg.GPU_ID)