python类PIXEL_MEANS的实例源码

minibatch.py 文件源码 项目:dpl 作者: ppengtang 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    im_shapes = np.zeros((0, 2), dtype=np.float32)
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale, im_shape = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size)
        im_scales.append(im_scale)
        processed_ims.append(im)
        im_shapes = np.vstack((im_shapes, im_shape))

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales, im_shapes
minibatch.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps):
    """Visualize a mini-batch for debugging."""
    import matplotlib.pyplot as plt
    for i in xrange(rois_blob.shape[0]):
        rois = rois_blob[i, :]
        im_ind = rois[0]
        roi = rois[1:]
        im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy()
        im += cfg.PIXEL_MEANS
        im = im[:, :, (2, 1, 0)]
        im = im.astype(np.uint8)
        cls = labels_blob[i]
        plt.imshow(im)
        print 'class: ', cls, ' overlap: ', overlaps[i]
        plt.gca().add_patch(
            plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0],
                          roi[3] - roi[1], fill=False,
                          edgecolor='r', linewidth=3)
            )
        plt.show()
torch_image_transform_layer.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def setup(self, bottom, top):
        # (1, 3, 1, 1) shaped arrays
        self.PIXEL_MEANS = \
            np.array([[[[0.48462227599918]],
                       [[0.45624044862054]],
                       [[0.40588363755159]]]])
        self.PIXEL_STDS = \
            np.array([[[[0.22889466674951]],
                       [[0.22446679341259]],
                       [[0.22495548344775]]]])
        # The default ("old") pixel means that were already subtracted
        channel_swap = (0, 3, 1, 2)
        self.OLD_PIXEL_MEANS = \
            cfg.PIXEL_MEANS[np.newaxis, :, :, :].transpose(channel_swap)

        top[0].reshape(*(bottom[0].shape))
minibatch.py 文件源码 项目:fast-rcnn-distillation 作者: xiaolonw 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps):
    """Visualize a mini-batch for debugging."""
    import matplotlib.pyplot as plt
    for i in xrange(rois_blob.shape[0]):
        rois = rois_blob[i, :]
        im_ind = rois[0]
        roi = rois[1:]
        im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy()
        im += cfg.PIXEL_MEANS
        im = im[:, :, (2, 1, 0)]
        im = im.astype(np.uint8)
        cls = labels_blob[i]
        plt.imshow(im)
        print 'class: ', cls, ' overlap: ', overlaps[i]
        plt.gca().add_patch(
            plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0],
                          roi[3] - roi[1], fill=False,
                          edgecolor='r', linewidth=3)
            )
        plt.show()
minibatch_backup.py 文件源码 项目:fast-rcnn-distillation 作者: xiaolonw 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds, data_i):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'][data_i])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch_backup.py 文件源码 项目:fast-rcnn-distillation 作者: xiaolonw 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps):
    """Visualize a mini-batch for debugging."""
    import matplotlib.pyplot as plt
    for i in xrange(rois_blob.shape[0]):
        rois = rois_blob[i, :]
        im_ind = rois[0]
        roi = rois[1:]
        im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy()
        im += cfg.PIXEL_MEANS
        im = im[:, :, (2, 1, 0)]
        im = im.astype(np.uint8)
        cls = labels_blob[i]
        plt.imshow(im)
        print 'class: ', cls, ' overlap: ', overlaps[i]
        plt.gca().add_patch(
            plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0],
                          roi[3] - roi[1], fill=False,
                          edgecolor='r', linewidth=3)
            )
        plt.show()
minibatch.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 70 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps):
    """Visualize a mini-batch for debugging."""
    import matplotlib.pyplot as plt
    for i in xrange(rois_blob.shape[0]):
        rois = rois_blob[i, :]
        im_ind = rois[0]
        roi = rois[1:]
        im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy()
        im += cfg.PIXEL_MEANS
        im = im[:, :, (2, 1, 0)]
        im = im.astype(np.uint8)
        cls = labels_blob[i]
        plt.imshow(im)
        print 'class: ', cls, ' overlap: ', overlaps[i]
        plt.gca().add_patch(
            plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0],
                          roi[3] - roi[1], fill=False,
                          edgecolor='r', linewidth=3)
            )
        plt.show()
torch_image_transform_layer.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def setup(self, bottom, top):
        # (1, 3, 1, 1) shaped arrays
        self.PIXEL_MEANS = \
            np.array([[[[0.48462227599918]],
                       [[0.45624044862054]],
                       [[0.40588363755159]]]])
        self.PIXEL_STDS = \
            np.array([[[[0.22889466674951]],
                       [[0.22446679341259]],
                       [[0.22495548344775]]]])
        # The default ("old") pixel means that were already subtracted
        channel_swap = (0, 3, 1, 2)
        self.OLD_PIXEL_MEANS = \
            cfg.PIXEL_MEANS[np.newaxis, :, :, :].transpose(channel_swap)

        top[0].reshape(*(bottom[0].shape))
minibatch.py 文件源码 项目:py-faster-rcnn-tk1 作者: joeking11829 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:py-faster-rcnn-tk1 作者: joeking11829 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps):
    """Visualize a mini-batch for debugging."""
    import matplotlib.pyplot as plt
    for i in xrange(rois_blob.shape[0]):
        rois = rois_blob[i, :]
        im_ind = rois[0]
        roi = rois[1:]
        im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy()
        im += cfg.PIXEL_MEANS
        im = im[:, :, (2, 1, 0)]
        im = im.astype(np.uint8)
        cls = labels_blob[i]
        plt.imshow(im)
        print 'class: ', cls, ' overlap: ', overlaps[i]
        plt.gca().add_patch(
            plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0],
                          roi[3] - roi[1], fill=False,
                          edgecolor='r', linewidth=3)
            )
        plt.show()
minibatch.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    global_vars.image_files = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        global_vars.image_files.append(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps):
    """Visualize a mini-batch for debugging."""
    import matplotlib.pyplot as plt
    for i in xrange(rois_blob.shape[0]):
        rois = rois_blob[i, :]
        im_ind = rois[0]
        roi = rois[1:]
        im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy()
        im += cfg.PIXEL_MEANS
        im = im[:, :, (2, 1, 0)]
        im = im.astype(np.uint8)
        cls = labels_blob[i]
        plt.imshow(im)
        print 'class: ', cls, ' overlap: ', overlaps[i]
        plt.gca().add_patch(
            plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0],
                          roi[3] - roi[1], fill=False,
                          edgecolor='r', linewidth=3)
            )
        plt.show()
torch_image_transform_layer.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def setup(self, bottom, top):
        # (1, 3, 1, 1) shaped arrays
        self.PIXEL_MEANS = \
            np.array([[[[0.48462227599918]],
                       [[0.45624044862054]],
                       [[0.40588363755159]]]])
        self.PIXEL_STDS = \
            np.array([[[[0.22889466674951]],
                       [[0.22446679341259]],
                       [[0.22495548344775]]]])
        # The default ("old") pixel means that were already subtracted
        channel_swap = (0, 3, 1, 2)
        self.OLD_PIXEL_MEANS = \
            cfg.PIXEL_MEANS[np.newaxis, :, :, :].transpose(channel_swap)

        top[0].reshape(*(bottom[0].shape))
test.py 文件源码 项目:RON 作者: taokong 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _get_image_blob(ims, target_size):
    """Converts an image into a network input.

    Arguments:
        im (ndarray): a color image in BGR order

    Returns:
        blob (ndarray): a data blob holding an image pyramid
        im_infos(ndarray): a data blob holding input size pyramid
    """
    processed_ims = []
    for im in ims:
        im = im.astype(np.float32, copy = False)
        im = im - cfg.PIXEL_MEANS
        im_shape = im.shape[0:2]
        im = cv2.resize(im, None, None, fx = float(target_size) / im_shape[1], \
            fy = float(target_size) / im_shape[0], interpolation = cv2.INTER_LINEAR)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob
minibatch.py 文件源码 项目:face-py-faster-rcnn 作者: playerkk 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:face-py-faster-rcnn 作者: playerkk 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps):
    """Visualize a mini-batch for debugging."""
    import matplotlib.pyplot as plt
    for i in xrange(rois_blob.shape[0]):
        rois = rois_blob[i, :]
        im_ind = rois[0]
        roi = rois[1:]
        im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy()
        im += cfg.PIXEL_MEANS
        im = im[:, :, (2, 1, 0)]
        im = im.astype(np.uint8)
        cls = labels_blob[i]
        plt.imshow(im)
        print 'class: ', cls, ' overlap: ', overlaps[i]
        plt.gca().add_patch(
            plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0],
                          roi[3] - roi[1], fill=False,
                          edgecolor='r', linewidth=3)
            )
        plt.show()
torch_image_transform_layer.py 文件源码 项目:face-py-faster-rcnn 作者: playerkk 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def setup(self, bottom, top):
        # (1, 3, 1, 1) shaped arrays
        self.PIXEL_MEANS = \
            np.array([[[[0.48462227599918]],
                       [[0.45624044862054]],
                       [[0.40588363755159]]]])
        self.PIXEL_STDS = \
            np.array([[[[0.22889466674951]],
                       [[0.22446679341259]],
                       [[0.22495548344775]]]])
        # The default ("old") pixel means that were already subtracted
        channel_swap = (0, 3, 1, 2)
        self.OLD_PIXEL_MEANS = \
            cfg.PIXEL_MEANS[np.newaxis, :, :, :].transpose(channel_swap)

        top[0].reshape(*(bottom[0].shape))
minibatch.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _vis_minibatch(im_blob, rois_blob, labels_blob, sublabels_blob):
    """Visualize a mini-batch for debugging."""
    import matplotlib.pyplot as plt
    for i in xrange(rois_blob.shape[0]):
        rois = rois_blob[i, :]
        im_ind = rois[0]
        roi = rois[2:]
        im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy()
        im += cfg.PIXEL_MEANS
        im = im[:, :, (2, 1, 0)]
        im = im.astype(np.uint8)
        cls = labels_blob[i]
        subcls = sublabels_blob[i]
        plt.imshow(im)
        print 'class: ', cls, ' subclass: ', subcls
        plt.gca().add_patch(
            plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0],
                          roi[3] - roi[1], fill=False,
                          edgecolor='r', linewidth=3)
            )
        plt.show()
minibatch2.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]

        im_orig = im.astype(np.float32, copy=True)
        im_orig -= cfg.PIXEL_MEANS

        im_scale = cfg.TRAIN.SCALES_BASE[scale_inds[i]]
        im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)

        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch2.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _get_image_blob_multiscale(roidb):
    """Builds an input blob from the images in the roidb at multiscales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    scales = cfg.TRAIN.SCALES_BASE
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]

        im_orig = im.astype(np.float32, copy=True)
        im_orig -= cfg.PIXEL_MEANS

        for im_scale in scales:
            im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)
            im_scales.append(im_scale)
            processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps):
    """Visualize a mini-batch for debugging."""
    import matplotlib.pyplot as plt
    for i in xrange(rois_blob.shape[0]):
        rois = rois_blob[i, :]
        im_ind = rois[0]
        roi = rois[1:]
        im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy()
        im += cfg.PIXEL_MEANS
        im = im[:, :, (2, 1, 0)]
        im = im.astype(np.uint8)
        cls = labels_blob[i]
        plt.imshow(im)
        print 'class: ', cls, ' overlap: ', overlaps[i]
        plt.gca().add_patch(
            plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0],
                          roi[3] - roi[1], fill=False,
                          edgecolor='r', linewidth=3)
            )
        plt.show()
minibatch.py 文件源码 项目:deep-fashion 作者: zuowang 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:deep-fashion 作者: zuowang 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps):
    """Visualize a mini-batch for debugging."""
    import matplotlib.pyplot as plt
    for i in xrange(rois_blob.shape[0]):
        rois = rois_blob[i, :]
        im_ind = rois[0]
        roi = rois[1:]
        im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy()
        im += cfg.PIXEL_MEANS
        im = im[:, :, (2, 1, 0)]
        im = im.astype(np.uint8)
        cls = labels_blob[i]
        plt.imshow(im)
        print 'class: ', cls, ' overlap: ', overlaps[i]
        plt.gca().add_patch(
            plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0],
                          roi[3] - roi[1], fill=False,
                          edgecolor='r', linewidth=3)
            )
        plt.show()
torch_image_transform_layer.py 文件源码 项目:deep-fashion 作者: zuowang 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def setup(self, bottom, top):
        # (1, 3, 1, 1) shaped arrays
        self.PIXEL_MEANS = \
            np.array([[[[0.48462227599918]],
                       [[0.45624044862054]],
                       [[0.40588363755159]]]])
        self.PIXEL_STDS = \
            np.array([[[[0.22889466674951]],
                       [[0.22446679341259]],
                       [[0.22495548344775]]]])
        # The default ("old") pixel means that were already subtracted
        channel_swap = (0, 3, 1, 2)
        self.OLD_PIXEL_MEANS = \
            cfg.PIXEL_MEANS[np.newaxis, :, :, :].transpose(channel_swap)

        top[0].reshape(*(bottom[0].shape))
minibatch.py 文件源码 项目:RPN 作者: hfut721 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
minibatch.py 文件源码 项目:RPN 作者: hfut721 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps):
    """Visualize a mini-batch for debugging."""
    import matplotlib.pyplot as plt
    for i in xrange(rois_blob.shape[0]):
        rois = rois_blob[i, :]
        im_ind = rois[0]
        roi = rois[1:]
        im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy()
        im += cfg.PIXEL_MEANS
        im = im[:, :, (2, 1, 0)]
        im = im.astype(np.uint8)
        cls = labels_blob[i]
        plt.imshow(im)
        print 'class: ', cls, ' overlap: ', overlaps[i]
        plt.gca().add_patch(
            plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0],
                          roi[3] - roi[1], fill=False,
                          edgecolor='r', linewidth=3)
            )
        plt.show()
torch_image_transform_layer.py 文件源码 项目:RPN 作者: hfut721 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def setup(self, bottom, top):
        # (1, 3, 1, 1) shaped arrays
        self.PIXEL_MEANS = \
            np.array([[[[0.48462227599918]],
                       [[0.45624044862054]],
                       [[0.40588363755159]]]])
        self.PIXEL_STDS = \
            np.array([[[[0.22889466674951]],
                       [[0.22446679341259]],
                       [[0.22495548344775]]]])
        # The default ("old") pixel means that were already subtracted
        channel_swap = (0, 3, 1, 2)
        self.OLD_PIXEL_MEANS = \
            cfg.PIXEL_MEANS[np.newaxis, :, :, :].transpose(channel_swap)

        top[0].reshape(*(bottom[0].shape))


问题


面经


文章

微信
公众号

扫码关注公众号