def __init__(self, num_jitters=10, dnn=False, det_threshold=0.0, upsample=0):
import_dlib()
ppath = os.path.join(os.environ['HOME'], '.tdesc')
if not dnn:
self.detector = dlib.get_frontal_face_detector()
else:
detpath = os.path.join(ppath, 'models/dlib/mmod_human_face_detector.dat')
self.detector = dlib.face_detection_model_v1(detpath)
shapepath = os.path.join(ppath, 'models/dlib/shape_predictor_68_face_landmarks.dat')
self.sp = dlib.shape_predictor(shapepath)
facepath = os.path.join(ppath, 'models/dlib/dlib_face_recognition_resnet_model_v1.dat')
self.facerec = dlib.face_recognition_model_v1(facepath)
self.num_jitters = num_jitters
self.dnn = dnn
self.det_threshold = det_threshold
self.upsample = upsample
print >> sys.stderr, 'DlibFaceWorker: ready (dnn=%d | num_jitters=%d)' % (int(dnn), int(num_jitters))
python类get_frontal_face_detector()的实例源码
def __init__(self, facePredictor):
"""
Instantiate an 'AlignDlib' object.
:param facePredictor: The path to dlib's facial landmark detector
:type facePredictor: str
:param OPENCV_Detector: The path to opencv's HaarCasscade
:type OPENCV_Detector: str
:param HOG_Detector: The path to dlib's HGO face detection model
:type HOG_Detector: str
"""
assert facePredictor is not None
self.OPENCV_Detector = cv2.CascadeClassifier("/home/pi/opencv-3.1.0/data/haarcascades/haarcascade_frontalface_default.xml")
self.HOG_Detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor(facePredictor)
def __init__(self, facePredictor):
"""
Instantiate an 'AlignDlib' object.
:param facePredictor: The path to dlib's
:type facePredictor: str
"""
assert facePredictor is not None
#pylint: disable=no-member
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor(facePredictor)
def __init__(self, facePredictor):
"""
Instantiate an 'AlignDlib' object.
:param facePredictor: The path to dlib's
:type facePredictor: str
"""
assert facePredictor is not None
#pylint: disable=no-member
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor(facePredictor)
data_preprocessing_autoencoder.py 文件源码
项目:AVSR-Deep-Speech
作者: pandeydivesh15
项目源码
文件源码
阅读 26
收藏 0
点赞 0
评论 0
def load_trained_models():
"""
Helper function to load DLIB's models.
"""
if not os.path.isfile("data/dlib_data/shape_predictor_68_face_landmarks.dat"):
return
global FACE_DETECTOR_MODEL, LANDMARKS_PREDICTOR
FACE_DETECTOR_MODEL = dlib.get_frontal_face_detector()
LANDMARKS_PREDICTOR = dlib.shape_predictor("data/dlib_data/shape_predictor_68_face_landmarks.dat")
data_preprocessing_video.py 文件源码
项目:AVSR-Deep-Speech
作者: pandeydivesh15
项目源码
文件源码
阅读 34
收藏 0
点赞 0
评论 0
def load_trained_models():
if not os.path.isfile("data/dlib_data/shape_predictor_68_face_landmarks.dat"):
return
global FACE_DETECTOR_MODEL, LANDMARKS_PREDICTOR
FACE_DETECTOR_MODEL = dlib.get_frontal_face_detector()
LANDMARKS_PREDICTOR = dlib.shape_predictor("data/dlib_data/shape_predictor_68_face_landmarks.dat")
def __init__(self,heads_list=[],predictor_path="./data/shape_predictor_68_face_landmarks.dat"):
'''
head_list:
?????????????????????????????????????????
?????????????????????????
predictor_path:
dlib?????
'''
#??????
self.PREDICTOR_PATH = predictor_path
self.FACE_POINTS = list(range(17, 68))
self.MOUTH_POINTS = list(range(48, 61))
self.RIGHT_BROW_POINTS = list(range(17, 22))
self.LEFT_BROW_POINTS = list(range(22, 27))
self.RIGHT_EYE_POINTS = list(range(36, 42))
self.LEFT_EYE_POINTS = list(range(42, 48))
self.NOSE_POINTS = list(range(27, 35))
self.JAW_POINTS = list(range(0, 17))
# ????????
self.ALIGN_POINTS = (self.LEFT_BROW_POINTS + self.RIGHT_EYE_POINTS + self.LEFT_EYE_POINTS +
self.RIGHT_BROW_POINTS + self.NOSE_POINTS + self.MOUTH_POINTS)
# ???????????????????????????????????????????
self.OVERLAY_POINTS = [self.LEFT_EYE_POINTS + self.RIGHT_EYE_POINTS + self.LEFT_BROW_POINTS + self.RIGHT_BROW_POINTS,
self.NOSE_POINTS + self.MOUTH_POINTS]
# ??????
self.COLOUR_CORRECT_BLUR_FRAC = 0.6
#?????????????dlib
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor(self.PREDICTOR_PATH)
#????
self.heads={}
if heads_list:
self.load_heads(heads_list)
def __init__(self, align_path, net_path):
# Init align and net
"""
Dlib / Openface Face recognizer
:param align_path: Dlib align path
:param net_path: Openface neural network path
"""
self._align = openface.AlignDlib(os.path.expanduser(align_path))
self._net = openface.TorchNeuralNet(os.path.expanduser(net_path), imgDim=96, cuda=False)
self._face_detector = dlib.get_frontal_face_detector()
self._trained_faces = []
def __init__(self, facePredictor = None):
"""Initialize the dlib-based alignment."""
self.detector = dlib.get_frontal_face_detector()
if facePredictor != None:
self.predictor = dlib.shape_predictor(facePredictor)
else:
self.predictor = None
def __init__(self, facePredictor):
"""
Instantiate an 'AlignDlib' object.
:param facePredictor: The path to dlib's
:type facePredictor: str
"""
assert facePredictor is not None
#pylint: disable=no-member
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor(facePredictor)
Modules.py 文件源码
项目:apparent-age-gender-classification
作者: danielyou0230
项目源码
文件源码
阅读 23
收藏 0
点赞 0
评论 0
def debug_face_landmark(file, output=False, output_name='output'):
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(dat_face_landmark)
image = cv2.imread(file)
image = imutils.resize(image, width=500)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
img_size = gray.shape
faces = detector(gray, 1)
for (i, itr_face) in enumerate(faces):
shape = predictor(gray, itr_face)
shape = shape_to_np(shape)
# convert dlib's rectangle to a OpenCV-style bounding box
# [i.e., (x, y, w, h)], then draw the face bounding box
(x, y, w, h) = rect_to_bb(itr_face, img_size, file)
#print "landmark: ({:d}, {:d}) ({:d}, {:d})".format(x, y, w, h)
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
# show the face number
cv2.putText(image, "Face #{}".format(i + 1), (x - 10, y - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# loop over the (x, y)-coordinates for the facial landmarks
# and draw them on the image
for (x, y) in shape:
cv2.circle(image, (x, y), 1, (0, 0, 255), -1)
# show the output image with the face detections + facial landmarks
cv2.imshow(file, image)
cv2.waitKey(0)
if output:
cv2.imwrite("../" + str(output_name + 1) + '.jpg', image)
cv2.destroyAllWindows()
def dlib_function(self,image):
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(self.shape_predictor)
image = imutils.resize(image, width=500)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
rects = detector(image, 1)
for (i, rect) in enumerate(rects):
shape = predictor(gray, rect)
shape = face_utils.shape_to_np(shape)
for (x, y) in shape:
cv2.circle(image, (x, y), 1, (0, 0, 255), -1)
return image
def __init__(self, facePredictor):
"""
Instantiate an 'AlignDlib' object.
:param facePredictor: The path to dlib's
:type facePredictor: str
"""
assert facePredictor is not None
#pylint: disable=no-member
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor(facePredictor)
def __init__(self, align_path, net_path, storage_folder):
self._bridge = CvBridge()
self._learn_srv = rospy.Service('learn', LearnFace, self._learn_face_srv)
self._detect_srv = rospy.Service('detect', DetectFace, self._detect_face_srv)
self._clear_srv = rospy.Service('clear', Empty, self._clear_faces_srv)
# Init align and net
self._align = openface.AlignDlib(align_path)
self._net = openface.TorchNeuralNet(net_path, imgDim=96, cuda=False)
self._face_detector = dlib.get_frontal_face_detector()
self._face_dict = {} # Mapping from string to list of reps
self._face_dict_filename = rospy.get_param( '~face_dict_filename', '' )
if ( self._face_dict_filename != '' ):
if ( not os.path.isfile( self._face_dict_filename ) ):
print '_face_dict does not exist; will save to %s' % self._face_dict_filename
else:
with open( self._face_dict_filename, 'rb') as f:
self._face_dict = pickle.load( f )
print 'read _face_dict: %s' % self._face_dict_filename
if not os.path.exists(storage_folder):
os.makedirs(storage_folder)
self._storage_folder = storage_folder
def __init__(self, predictor_path):
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor(str(predictor_path))
def __init__(self):
self.PREDICTOR_PATH = "../shape_predictor_68_face_landmarks.dat"
self.MOUTH_POINTS = [list(range(48, 61))]
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor(self.PREDICTOR_PATH)
def __init__(self):
self.PREDICTOR_PATH = "shape_predictor_68_face_landmarks.dat"
MOUTH_POINTS = list(range(48, 61))
self.OVERLAY_POINTS = [MOUTH_POINTS]
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor(self.PREDICTOR_PATH)
def __init__(self, facePredictor):
"""
Instantiate an 'AlignDlib' object.
:param facePredictor: The path to dlib's
:type facePredictor: str
"""
assert facePredictor is not None
#pylint: disable=no-member
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor(facePredictor)
def __init__(self, facePredictor):
"""
Instantiate an 'AlignDlib' object.
:param facePredictor: The path to dlib's
:type facePredictor: str
"""
assert facePredictor is not None
#pylint: disable=no-member
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor(facePredictor)
def __init__(self):
self.detector = dlib.get_frontal_face_detector()
Modules.py 文件源码
项目:apparent-age-gender-classification
作者: danielyou0230
项目源码
文件源码
阅读 22
收藏 0
点赞 0
评论 0
def face_extraction(path):
path_str = path[:-1] if path.endswith('/') else path
output_dir = path_str + '_faces'
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(dat_face_landmark)
face_cascade = cv2.CascadeClassifier(xml_face_classifier)
undetectLst = list()
numfile = get_dataInfo(path_str)
not_detected = 0
itr = 0
for itr_file in os.listdir(path_str):
if itr_file.endswith('.jpg'):
file = "{:s}/{:s}".format(path_str, itr_file)
image = cv2.imread(file)
image = imutils.resize(image, width=500)
bFace, faces = facial_landmark_detection(image, detector, predictor, file)
if not bFace:
bFace, faces = face_detect_classifier(image, face_cascade)
if not bFace:
print file
undetectLst.append(file)
not_detected += 1
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imwrite("{:s}/{:s}".format(output_dir, itr_file), image)
continue
x, y, w, h = faces
crop_img = image[y:y + h, x:x + w]
crop_img = cv2.cvtColor(crop_img, cv2.COLOR_BGR2GRAY)
cv2.imwrite("{:s}/{:s}".format(output_dir, itr_file), crop_img)
itr += 1
else:
continue
total = itr + not_detected
print "{:s}: {:4d} of {:4d} file missed detected, detect rate {:2.2f}%"\
.format(path_str, not_detected, total, 100.0 * itr / total)
return undetectLst, total
def main_func():
img_path='snap.jpg' # THE PATH OF THE IMAGE TO BE ANALYZED
font=cv2.FONT_HERSHEY_DUPLEX
emotions = ["anger", "happy", "sadness"] #Emotion list
clahe=cv2.createCLAHE(clipLimit=2.0,tileGridSize=(8,8)) # Histogram equalization object
face_det=dlib.get_frontal_face_detector()
land_pred=dlib.shape_predictor("data/DlibPredictor/shape_predictor_68_face_landmarks.dat")
SUPPORT_VECTOR_MACHINE_clf2 = joblib.load('data/Trained_ML_Models/SVM_emo_model_7.pkl')
# Loading the SVM model trained earlier in the path mentioned above.
pred_data=[]
pred_labels=[]
a=crop_face(img_path)
img=cv2.imread(a)
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
clahe_gray=clahe.apply(gray)
landmarks_vec = get_landmarks(clahe_gray,face_det,land_pred)
#print(len(landmarks_vec))
#print(landmarks_vec)
if landmarks_vec == "error":
pass
else:
pred_data.append(landmarks_vec)
np_test_data = np.array(pred_data)
a=SUPPORT_VECTOR_MACHINE_clf2.predict(pred_data)
#cv2.putText(img,'DETECTED FACIAL EXPRESSION : ',(8,30),font,0.7,(0,0,255),2,cv2.LINE_AA)
#l=len('Facial Expression Detected : ')
#cv2.putText(img,emotions[a[0]].upper(),(150,60),font,1,(255,0,0),2,cv2.LINE_AA)
#cv2.imshow('test_image',img)
#print(emotions[a[0]])
cv2.waitKey(0)
cv2.destroyAllWindows()
return emotions[a[0]]
def averageFacesImage(df, outpath):
detector = dlib.get_frontal_face_detector()
numRows = 7
facesPerRow = 26
imageSize = 30
FULLIm = np.zeros((numRows * imageSize, facesPerRow * imageSize*2, 3), dtype=np.uint8)
# df = df[df["numImages"] >= 2]
df = df.sort(['attractiveness'])
grouped = df.groupby("gender")
for i, (gender, group) in enumerate(grouped):
fullIm = np.zeros((numRows * imageSize, facesPerRow * imageSize, 3), dtype=np.uint8)
numPeople = group.shape[0]
numPeoplePerRow = int(numPeople / numRows)
for j in range(numRows):
rowPeople = group.iloc[numPeoplePerRow*j:numPeoplePerRow*(j+1)]
# randomSampleIndexs = np.linspace(0,rowPeople.shape[0]-1,facesPerRow).astype(np.int32)
randomSampleIndexs = random.sample(range(numPeoplePerRow), facesPerRow)
impathss = np.array(rowPeople["impaths"].as_matrix().tolist())
attractiveness = np.array(rowPeople["attractiveness"].as_matrix().tolist())
for l,k in enumerate(randomSampleIndexs):
impaths = impathss[k]
randomImIndexs = random.sample(range(len(impaths)), len(impaths))
for index in randomImIndexs:
im = cv2.imread(impaths[index])
rects = detector(im, 1)
if len(rects) != 1:
continue
rect = rects[0]
ryt = max(rect.top() - (rect.height()*0.2) ,0)
ryb = min(rect.bottom() + (rect.height()*0.2) , im.shape[0])
rxl = max(rect.left() - (rect.width()*0.2) ,0)
rxr = min(rect.right() + (rect.width()*0.2) ,im.shape[1])
faceim = im[ryt:ryb, rxl:rxr]
if faceim.shape[0] < 40 or faceim.shape[1] < 40:
continue
faceim = ensureImageSmallestDimension(faceim, imageSize)
y=j*imageSize
x=l*imageSize
print("%d,%d"%(x,y))
fullIm[y:y + imageSize, x:x + imageSize, :] = faceim[:imageSize, :imageSize, :]
x = (l*(imageSize*2)) + (imageSize*((i+j)%2))
FULLIm[y:y + imageSize, x:x + imageSize, :] = faceim[:imageSize, :imageSize, :]
cv2.imshow("faces", FULLIm)
cv2.waitKey(1)
break
cv2.imwrite(os.path.join(outpath, "allfaces_%s.jpg"%gender),fullIm)
cv2.imwrite(os.path.join(outpath, "allfaces.jpg" ), FULLIm)