python类load()的实例源码

simple.py 文件源码 项目:distributional_perspective_on_RL 作者: Kiwoo 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def load(path, num_cpu=16):
    """Load act function that was returned by learn function.

    Parameters
    ----------
    path: str
        path to the act function pickle
    num_cpu: int
        number of cpus to use for executing the policy

    Returns
    -------
    act: ActWrapper
        function that takes a batch of observations
        and returns actions.
    """
    return ActWrapper.load(path, num_cpu=num_cpu)
FeatureEngineering.py 文件源码 项目:kaggle 作者: RankingAI 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def __LaunchTask(self, task, PredCols):
        """"""
        print('\n---- Begin to deal with %s' % (task))
        start = time.time()

        if(task == 'MissingValue'):
            self.TrainData, self.TestData = self._missing.impute((self.TrainData, self.TestData))
        elif(task == 'NewFeature'):
            self.TrainData, self.TestData = self._newfeat.create((self.TrainData, self.TestData), PredCols)
        elif(task == 'FeatureEncoding'):
            with open('%s/featmap.pkl' % self._InputDir, 'rb') as i_file:
                d_feat = pickle.load(i_file)
            i_file.close()
            self.TrainData, self.TestData = self._encoding.ordinal((self.TrainData, self.TestData), d_feat)
        elif(task == 'FeatureSelection'):
            self.TrainData, self.TestData = self._select.select((self.TrainData, self.TestData))

        end = time.time()
        print('---- Task %s done, time consumed %ds' % (task, (end - start)))
simple.py 文件源码 项目:combine-DT-with-NN-in-RL 作者: Burning-Bear 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def load(path, num_cpu=16):
    """Load act function that was returned by learn function.

    Parameters
    ----------
    path: str
        path to the act function pickle
    num_cpu: int
        number of cpus to use for executing the policy

    Returns
    -------
    act: ActWrapper
        function that takes a batch of observations
        and returns actions.
    """
    return ActWrapper.load(path, num_cpu=num_cpu)
simple.py 文件源码 项目:combine-DT-with-NN-in-RL 作者: Burning-Bear 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def load(path, num_cpu=16):
    """Load act function that was returned by learn function.

    Parameters
    ----------
    path: str
        path to the act function pickle
    num_cpu: int
        number of cpus to use for executing the policy

    Returns
    -------
    act: ActWrapper
        function that takes a batch of observations
        and returns actions.
    """
    return ActWrapper.load(path, num_cpu=num_cpu)
simple.py 文件源码 项目:rl-attack-detection 作者: yenchenlin 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def load(path, num_cpu=16):
    """Load act function that was returned by learn function.

    Parameters
    ----------
    path: str
        path to the act function pickle
    num_cpu: int
        number of cpus to use for executing the policy

    Returns
    -------
    act: ActWrapper
        function that takes a batch of observations
        and returns actions.
    """
    return ActWrapper.load(path, num_cpu=num_cpu)
main.py 文件源码 项目:hakkuframework 作者: 4shadoww 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def load_session(fname=None):
    if conf.interactive_shell.lower() == "ipython":
        log_interactive.error("There are issues with load_session in ipython. Use python for interactive shell, or use -s parameter to load session")    
        return

    import dill as pickle

    if fname is None:
        fname = conf.session
    try:
        s = pickle.load(gzip.open(fname,"rb"))
    except IOError:
        s = pickle.load(open(fname,"rb"))
    scapy_session = builtins.__dict__["scapy_session"]
    scapy_session.clear()
    scapy_session.update(s)
exp_baseline_linear.py 文件源码 项目:marseille 作者: vene 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def saga_cv_cache(*args):

    arghash = sha1(repr(args).encode('utf-8')).hexdigest()
    fn = "res/baseline_linear_{}.dill".format(arghash)

    try:
        with open(fn, 'rb') as f:
            out = dill.load(f)
        logging.info("Loaded cached version.")
    except FileNotFoundError:
        logging.info("Computing...")
        out = saga_cv(*args)
        with open(fn, 'wb') as f:
            dill.dump(out, f)

    return out
main.py 文件源码 项目:trex-http-proxy 作者: alwye 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def load_session(fname=None):
    if conf.interactive_shell.lower() == "ipython":
        log_interactive.error("There are issues with load_session in ipython. Use python for interactive shell, or use -s parameter to load session")    
        return

    import dill as pickle

    if fname is None:
        fname = conf.session
    try:
        s = pickle.load(gzip.open(fname,"rb"))
    except IOError:
        s = pickle.load(open(fname,"rb"))
    scapy_session = builtins.__dict__["scapy_session"]
    scapy_session.clear()
    scapy_session.update(s)
dqfd.py 文件源码 项目:pysc2-examples 作者: chris-chris 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def load(path, act_params, num_cpu=16):
  """Load act function that was returned by learn function.

Parameters
----------
path: str
    path to the act function pickle
num_cpu: int
    number of cpus to use for executing the policy

Returns
-------
act: ActWrapper
    function that takes a batch of observations
    and returns actions.
"""
  return ActWrapper.load(path, num_cpu=num_cpu, act_params=act_params)
deepq_mineral_4way.py 文件源码 项目:pysc2-examples 作者: chris-chris 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def load(path, act_params, num_cpu=16):
  """Load act function that was returned by learn function.

Parameters
----------
path: str
    path to the act function pickle
num_cpu: int
    number of cpus to use for executing the policy

Returns
-------
act: ActWrapper
    function that takes a batch of observations
    and returns actions.
"""
  return ActWrapper.load(path, num_cpu=num_cpu, act_params=act_params)
server.py 文件源码 项目:SynthDB 作者: shawnrushefsky 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def update(self):
        if not secure or check_key():
            with open(os.path.join(path, 'preql_queries.pickle')) as pq:
                self.queries = pickle.load(pq)
            with open(os.path.join(path, "synthdb_internal.pickle")) as sdb:
                funcs = pickle.load(sdb)
                node_topo_funcs.update(funcs['node_topo_funcs'])
                link_topo_funcs.update(funcs['link_topo_funcs'])
                graph_format.update(funcs['graph_format'])
                removers.update(funcs['removers'])
                graph_tool_functions.update(funcs['graph_tool_functions'])
                graph_generator_functions.update(funcs['graph_generator_functions'])
                walkers.update(funcs['walkers'])
                topo_formats.update(funcs['topo_formats'])
            return json.dumps("Functions updated.")
        else:
            wrong_key()
runapp.py 文件源码 项目:chemworkflows 作者: avirshup 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def restart_workflow(args, outdir):
    with open(args.inputfile, 'r') as infile:
        runner = dill.load(infile)

    if isinstance(runner.engine, pyccc.Docker) and runner.engine.client is None:
        runner.engine.client = runner.engine.connect_to_docker()

    engine, RunnerClass = get_execution_env(args)
    assert RunnerClass is runner.__class__

    if args.setoutput:
        set_ui_outputs(runner, args)

    print ' ----   RESTARTING WORKFLOW "%s"   ----\n' % runner.workflow.name

    run_workflow(runner, outdir)
    if args.dumptasks:
        dump_all_tasks(runner, outdir)
runapp.py 文件源码 项目:chemworkflows 作者: avirshup 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def process_input_file(inputfile):
    """ Figure out whether we're being passed a file, a description of a file, or just raw JSON
    """
    try:
        jsraw = _get_json(inputfile)
    except ValueError:
        pass
    else:
        print jsraw
        inputjson = json.loads(jsraw)
        return inputjson

    ext = inputfile.split('.')[-1]
    if ext in ('js', 'json', 'yml', 'yaml'):
        with open(inputfile, 'r') as infile:
            inputjson = yaml.load(infile)
    else:
        with open(inputfile, 'r') as infile:
            inputjson = {'filename': inputfile,
                         'content': infile.read()}
    return inputjson
test_lambda.py 文件源码 项目:lambdify 作者: ZhukovAlexander 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_create(self, mock):

        value = 1
        function_name = 'test_function'

        @Lambda(name=function_name, bucket='test', key='test', client=self.client)
        def foo():
            return value

        package = DeploymentPackage(foo)

        zfp = zipfile.ZipFile(StringIO(package.zip_bytes(foo.dumped_code)), "r")
        func = dill.load(zfp.open('.lambda.dump'))
        self.assertEqual(func(), value)

        resp_create = foo.create()
        self.assertEqual(resp_create['FunctionName'], function_name)

        # moto doesn't support ZipFile only lambda deployments, while
        # aws doen't allow other arguments when scpesifying ZipFile argument
        #resp_get = foo.get()
        #self.assertEqual(resp_get['Configuration']['FunctionName'], function_name)
run_sample_type_predictor.py 文件源码 项目:MetaSRA-pipeline 作者: deweylab 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def run_sample_type_prediction(tag_to_val, mapped_terms, real_props):

    # Load the dilled vectorizer and model
    vectorizer_f = pr.resource_filename(__name__, join("predict_sample_type", "sample_type_vectorizor.dill"))
    classifier_f = pr.resource_filename(__name__, join("predict_sample_type", "sample_type_classifier.dill"))
    with open(vectorizer_f, "rb") as f:
        vectorizer = dill.load(f)
    with open(classifier_f, "rb") as f:
        model = dill.load(f)

    # Make sample-type prediction
    feat_v = vectorizer.convert_to_features(
        get_ngrams_from_tag_to_val(tag_to_val),
        mapped_terms)
    predicted, confidence = model.predict(
        feat_v,
        mapped_terms,
        real_props)

    return predicted, confidence
iwords.py 文件源码 项目:ip6words 作者: lstn 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def dill_words(num_words, fname="words.dill"):
    fname = os.path.join(os.path.dirname(os.path.realpath(__file__)), fname)
    try:
        if os.path.isfile(fname):
            words = dill.load(open(fname, "rb"))
            if(len(words) < ip_handling.iutils.get_ipv6_word_possibilities()):
                os.remove(fname)
                raise Exception # go into except block to reload words
            return words
        else:
            words = load_words(num_words)
            if(len(words) < ip_handling.iutils.get_ipv6_word_possibilities()):
                raise Exception # go into except block to reload words
            dill.dump(words, open(fname, "wb"))
            return words
    except:
        try:
            words = load_words(num_words)
            if(len(words) < ip_handling.iutils.get_ipv6_word_possibilities()):
                raise Exception # go into except block to reload words
            dill.dump(words, open(fname, "wb"))
            return words
        except:
            return load_words(num_words)
main.py 文件源码 项目:EternityII 作者: lumy 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def _load_file(path):
  """
    Use to load a file with dill, used for loading puzzle. file should have \
    been wrote with dill.

  :param str path: path to the file to load
  :return: object (excepted [Puzzle](doc/puzzle.md) but no check is made)
  """
  try:
    with open(path, "rb") as e:
      puzzle.Puzzle.dynamique_type()
      return dill.load(e)
  except Exception as e:
    print "Exception while loading file %s" % path
    print e
    return None
main.py 文件源码 项目:PaintingToArtists 作者: achintyagopal 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def get_files(folder_name, algorithm, args):

    foldersTmp = os.listdir(folder_name)
    folders = []
    for folder in foldersTmp:
        if folder[0] == '.':
            continue
        folders.append(folder)

    imgs = []
    for folder in folders:
        path = folder_name + folder + '/'
        if not os.path.isdir(path):
            continue

        files = os.listdir(path)
        for file_str in files:
            complete_file_str = str((os.path.join(path, file_str)))
            if os.path.isfile(complete_file_str) and (complete_file_str.endswith('.jpg') or complete_file_str.endswith('.JPG')):
                imgs.append((os.path.join(path, file_str), folder))

    return imgs


# load instances from filename
main.py 文件源码 项目:PaintingToArtists 作者: achintyagopal 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def get_files(folder_name, algorithm, args):
    foldersTmp = os.listdir(folder_name)
    folders = []
    for folder in foldersTmp:
        if folder[0] == '.':
            continue
        folders.append(folder)

    imgs = []
    for folder in folders:
        path = folder_name + folder + '/'
        if not os.path.isdir(path):
            continue

        files = os.listdir(path)
        for file_str in files:
            complete_file_str = str((os.path.join(path, file_str)))
            if os.path.isfile(complete_file_str) and (complete_file_str.endswith('.jpg') or complete_file_str.endswith('.JPG')):
                imgs.append((os.path.join(path, file_str), folder))
    return imgs


# load instances from filename
cli.py 文件源码 项目:easytrader 作者: yuzhucu 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def main(prepare, use, do, get, params, debug):
    if get is not None:
        do = get
    if prepare is not None and use in ['ht', 'yjb', 'yh', 'gf', 'xq']:
        user = easytrader.use(use, debug)
        user.prepare(prepare)
        with open(ACCOUNT_OBJECT_FILE, 'wb') as f:
            dill.dump(user, f)
    if do is not None:
        with open(ACCOUNT_OBJECT_FILE, 'rb') as f:
            user = dill.load(f)

        if len(params) > 0:
            result = getattr(user, do)(*params)
        else:
            result = getattr(user, do)

        json_result = json.dumps(result, indent=4, ensure_ascii=False, sort_keys=True)
        click.echo(json_result)
persister.py 文件源码 项目:Quadflor 作者: quadflor 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def read(self):
        """
        Reads from persisted files.

        Returns
        -------
        sparse matrix
            The train data
        sparse matrix
            The label data
        ThesaurusReader
            Unpickled ThesaurusReader object
        """
        print('Reading persisted features')
        X = self._load_sparse_csr(self._persist_name('X'))
        y = self._load_sparse_csr(self._persist_name('y'))
        with open(self._persist_name('TR'), mode='rb') as f:
            tr = pickle.load(f)
        return X, y, tr
load_test_data.py 文件源码 项目:BotBoosted 作者: brityboy 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def create_processed_dataframe_from_mongo(dbname):
    '''
    INPUT
         - dbname: this is the name of the mongo database where the
         information will be extracted from
    OUTPUT
         - df

    Returns a dataframe that has everything needed in order to do modelling
    '''
    df = extract_user_information_from_mongo(dbname, 'topictweets')
    # df = pd.read_csv('data/clinton_df.csv')
    # df.id = df.id.apply(str)
    feature_dict = extract_feature_information_from_mongo(dbname,
                                                          'timelinetweets')
    # with open('data/clinton_tweets_dict.pkl', 'r') as f:
    #     feature_dict = pickle.load(f)
    df = df.drop_duplicates(subset='id', keep='last')
    users_who_tweeted = set(feature_dict.keys())
    dfusers_who_tweeted = df[df.id.isin(users_who_tweeted)]
    # subset the initial user dataframe to have ONLY the users who tweeted
    df = combine_user_info_with_feature_dict(dfusers_who_tweeted, feature_dict)
    df = process_feature_information_for_modelling(df, feature_dict)
    df = drop_unnecessary_columns_from_test_data(df)
    return df
storage.py 文件源码 项目:mbot 作者: michaelkuty 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def restore_state(self, path):
        """Returns loaded state"""

        try:
            with open(path, 'rb') as f:
                if self.encrypt:
                    state = pickle.loads(self.decrypt_data(pickle.load(f)))
                else:
                    state = pickle.load(f)

                LOG.debug("Restoring state successs")
        except Exception as e:
            LOG.debug("Restoring state from %s failed with %s" % (
                path, e))
            state = StateMachine(self.bot, state_path=path)
            LOG.debug("Successfully inicialized new state.")

        return state
main.py 文件源码 项目:PyQYT 作者: collinsctk 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def load_session(fname=None):
    if conf.interactive_shell.lower() == "ipython":
        log_interactive.error("There are issues with load_session in ipython. Use python for interactive shell, or use -s parameter to load session")    
        return

    import dill as pickle

    if fname is None:
        fname = conf.session
    try:
        s = pickle.load(gzip.open(fname,"rb"))
    except IOError:
        s = pickle.load(open(fname,"rb"))
    scapy_session = builtins.__dict__["scapy_session"]
    scapy_session.clear()
    scapy_session.update(s)
extensions.py 文件源码 项目:shapenet 作者: pannous 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def restore(file_name="dump.bin"):
    return pickle.load(open(file_name, 'rb'))


# class Encoding:
#     pass


# @extension
# class Math:
# WOOOT? just
# import math as Math
# def __getattr__(self, attr):
#     import sys
#     import math
#  # ruby method_missing !!!
#     import inspect
#     for name, obj in inspect.getmembers(sys.modules['math']):
#         if name==attr: return obj
#     return False
simple.py 文件源码 项目:distributional_perspective_on_RL 作者: Kiwoo 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def load(path, num_cpu=16):
        with open(path, "rb") as f:
            model_data, act_params = dill.load(f)
        act = deepq.build_act(**act_params)
        sess = U.make_session(num_cpu=num_cpu)
        sess.__enter__()
        with tempfile.TemporaryDirectory() as td:
            arc_path = os.path.join(td, "packed.zip")
            with open(arc_path, "wb") as f:
                f.write(model_data)

            zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td)
            U.load_state(os.path.join(td, "model"))

        return ActWrapper(act, act_params)
plot.py 文件源码 项目:SGAN 作者: YuhangSong 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def restore(self):

        print('Try load previous plot....')
        try:
            self._since_beginning = dill.load(open(self.LOGDIR+'log.pkl', "r"))
            self._iter = dill.load(open(self.LOGDIR+'iteration.pkl', "r"))
            # self._iter += 1
            print('Restore plot from iter: '+str(self._iter))
            return self._iter
        except Exception, e:
            print('Previous plot unfounded')
            return 0
        print('')
Preprocess.py 文件源码 项目:kaggle 作者: RankingAI 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __MergeData(cls, InputDir, OutputDir, mode):
        """"""
        if(mode == 'train'):
            ActionDataFile = '%s/train_2016_v2.csv' % InputDir
            OutputFile = '%s/train.pkl' % OutputDir
        else:
            ActionDataFile = '%s/sample_submission.csv' % InputDir
            OutputFile = '%s/test.pkl' % OutputDir

        print(OutputFile)

        PropertyDataFile = '%s/properties_2016.csv' % InputDir

        ## load
        ActionData = pd.read_csv(ActionDataFile, parse_dates=['transactiondate'])
        PropertyData = pd.read_csv(PropertyDataFile)

        ## left join
        MergedData = ActionData.merge(PropertyData, how='left', on='parcelid')

        ## output into pkl file
        if (os.path.exists(OutputDir) == False):
            os.makedirs(OutputDir)
        with open(OutputFile, 'wb') as o_file:
            pickle.dump(MergedData, o_file, -1)
        o_file.close()

        return

    ## split rawcensustractandblock into census, tract and block
Preprocess.py 文件源码 项目:kaggle 作者: RankingAI 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __ParseCTB(cls, InputDir, OutputDir, mode):
        """"""
        if(mode == 'train'):
            InputFile = '%s/train.pkl' % InputDir
            OutputFile = '%s/train.pkl' % OutputDir
        else:
            InputFile = '%s/test.pkl' % InputDir
            OutputFile = '%s/test.pkl' % OutputDir

        ## load
        with open(InputFile, 'rb') as i_file:
            df_data = pickle.load(i_file)
        i_file.close()

        ## extract census, tract and block identifies
        df_data['rawcensustractandblock'] = (df_data['rawcensustractandblock'] * 1000).astype(np.float64).astype(np.int64)
        df_data['fipsid'] = ((df_data['rawcensustractandblock'] / 10000000).astype(np.int64)).astype(str)
        df_data['tractandblock'] = df_data['rawcensustractandblock'] % 10000000
        df_data['tractid'] = ((df_data['tractandblock'] / 10).astype(np.int64)).astype(str)
        df_data['blockid'] = ((df_data['tractandblock'] % 10).astype(np.int64)).astype(str)
        df_data.drop(['fips', 'rawcensustractandblock', 'tractandblock'], axis = 1, inplace = True)

        ## output into pkl file
        if (os.path.exists(OutputDir) == False):
            os.makedirs(OutputDir)
        with open(OutputFile, 'wb') as o_file:
            pickle.dump(df_data, o_file, -1)
        o_file.close()

        return
Preprocess.py 文件源码 项目:kaggle 作者: RankingAI 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __SplitData(cls, InputDir, OutputDir, mode):
        """"""
        if(mode == 'train'):
            InputFileData = '%s/train.pkl' % InputDir
        else:
            InputFileData = '%s/test.pkl' % InputDir

        InputFileFeatMap = '%s/featmap.pkl' % InputDir

        ## load
        with open(InputFileData, 'rb') as i_file:
            df_data = pickle.load(i_file)
        i_file.close()
        with open(InputFileFeatMap, 'rb') as i_file:
            d_feat = pickle.load(i_file)
        i_file.close()

        if (os.path.exists(OutputDir) == False):
            os.makedirs(OutputDir)
        with open('%s/featmap.pkl' % OutputDir, 'wb') as o_file:
            pickle.dump(d_feat, o_file, -1)
        o_file.close()

        ## output into individual pkl files
        for i in range(12):
            month = i + 1
            df_MonthData = df_data[(df_data['transactiondate'].dt.month == month)]
            with open('%s/%s.pkl'% (OutputDir, month), 'wb') as o_file:
                pickle.dump(df_MonthData, o_file, -1)
            o_file.close()

        return

    ## launch single task


问题


面经


文章

微信
公众号

扫码关注公众号