def fromtimestamp(timestamp, tz=None):
"""Return the local date and time corresponding to the POSIX timestamp.
Same as is returned by time.time(). If optional argument tz is None or
not specified, the timestamp is converted to the platform's local date
and time, and the returned datetime object is naive.
Else tz must be an instance of a class tzinfo subclass, and the
timestamp is converted to tz's time zone. In this case the result is
equivalent to
tz.fromutc(datetime.utcfromtimestamp(timestamp).replace(tzinfo=tz)).
fromtimestamp() may raise ValueError, if the timestamp is out of the
range of values supported by the platform C localtime() or gmtime()
functions. It's common for this to be restricted to years in 1970
through 2038. Note that on non-POSIX systems that include leap seconds
in their notion of a timestamp, leap seconds are ignored by
fromtimestamp(), and then it's possible to have two timestamps
differing by a second that yield identical datetime objects.
See also utcfromtimestamp().
"""
python类localtime()的实例源码
def fromtimestamp(timestamp, tz=None):
"""Return the local date and time corresponding to the POSIX timestamp.
Same as is returned by time.time(). If optional argument tz is None or
not specified, the timestamp is converted to the platform's local date
and time, and the returned datetime object is naive.
Else tz must be an instance of a class tzinfo subclass, and the
timestamp is converted to tz's time zone. In this case the result is
equivalent to
tz.fromutc(datetime.utcfromtimestamp(timestamp).replace(tzinfo=tz)).
fromtimestamp() may raise ValueError, if the timestamp is out of the
range of values supported by the platform C localtime() or gmtime()
functions. It's common for this to be restricted to years in 1970
through 2038. Note that on non-POSIX systems that include leap seconds
in their notion of a timestamp, leap seconds are ignored by
fromtimestamp(), and then it's possible to have two timestamps
differing by a second that yield identical datetime objects.
See also utcfromtimestamp().
"""
def fromtimestamp(timestamp, tz=None):
"""Return the local date and time corresponding to the POSIX timestamp.
Same as is returned by time.time(). If optional argument tz is None or
not specified, the timestamp is converted to the platform's local date
and time, and the returned datetime object is naive.
Else tz must be an instance of a class tzinfo subclass, and the
timestamp is converted to tz's time zone. In this case the result is
equivalent to
tz.fromutc(datetime.utcfromtimestamp(timestamp).replace(tzinfo=tz)).
fromtimestamp() may raise ValueError, if the timestamp is out of the
range of values supported by the platform C localtime() or gmtime()
functions. It's common for this to be restricted to years in 1970
through 2038. Note that on non-POSIX systems that include leap seconds
in their notion of a timestamp, leap seconds are ignored by
fromtimestamp(), and then it's possible to have two timestamps
differing by a second that yield identical datetime objects.
See also utcfromtimestamp().
"""
def fromtimestamp(timestamp):
"""Return the local date from a POSIX timestamp (like time.time())
This may raise ValueError, if the timestamp is out of the range of
values supported by the platform C localtime() function. It's common
for this to be restricted to years from 1970 through 2038. Note that
on non-POSIX systems that include leap seconds in their notion of a
timestamp, leap seconds are ignored by fromtimestamp().
"""
def timetuple():
"""Return a 9-element tuple of the form returned by time.localtime().
The hours, minutes and seconds are 0, and the DST flag is -1.
d.timetuple() is equivalent to
(d.year, d.month, d.day, 0, 0, 0, d.weekday(), d.toordinal() -
date(d.year, 1, 1).toordinal() + 1, -1)
"""
def fromtimestamp(timestamp, tz=None):
"""Return the local date and time corresponding to the POSIX timestamp.
Same as is returned by time.time(). If optional argument tz is None or
not specified, the timestamp is converted to the platform's local date
and time, and the returned datetime object is naive.
Else tz must be an instance of a class tzinfo subclass, and the
timestamp is converted to tz's time zone. In this case the result is
equivalent to
tz.fromutc(datetime.utcfromtimestamp(timestamp).replace(tzinfo=tz)).
fromtimestamp() may raise ValueError, if the timestamp is out of the
range of values supported by the platform C localtime() or gmtime()
functions. It's common for this to be restricted to years in 1970
through 2038. Note that on non-POSIX systems that include leap seconds
in their notion of a timestamp, leap seconds are ignored by
fromtimestamp(), and then it's possible to have two timestamps
differing by a second that yield identical datetime objects.
See also utcfromtimestamp().
"""
def timetuple():
"""Return a 9-element tuple of the form returned by time.localtime()."""
def test_fromtimestamp(self):
import time
ts = time.time()
expected = time.localtime(ts)
got = self.theclass.fromtimestamp(ts)
self.verify_field_equality(expected, got)
def test_fromtimestamp(self):
import time
ts = time.time()
expected = time.localtime(ts)
got = self.theclass.fromtimestamp(ts)
self.verify_field_equality(expected, got)
def test_fromtimestamp(self):
import time
ts = time.time()
expected = time.localtime(ts)
got = self.theclass.fromtimestamp(ts)
self.verify_field_equality(expected, got)
def fromtimestamp(timestamp):
"""Return the local date from a POSIX timestamp (like time.time())
This may raise ValueError, if the timestamp is out of the range of
values supported by the platform C localtime() function. It's common
for this to be restricted to years from 1970 through 2038. Note that
on non-POSIX systems that include leap seconds in their notion of a
timestamp, leap seconds are ignored by fromtimestamp().
"""
def timetuple():
"""Return a 9-element tuple of the form returned by time.localtime().
The hours, minutes and seconds are 0, and the DST flag is -1.
d.timetuple() is equivalent to
(d.year, d.month, d.day, 0, 0, 0, d.weekday(), d.toordinal() -
date(d.year, 1, 1).toordinal() + 1, -1)
"""
def timetuple():
"""Return a 9-element tuple of the form returned by time.localtime()."""
def test_fromtimestamp(self):
import time
ts = time.time()
expected = time.localtime(ts)
got = self.theclass.fromtimestamp(ts)
self.verify_field_equality(expected, got)
def test_microsecond_rounding(self):
for fts in [self.theclass.fromtimestamp,
self.theclass.utcfromtimestamp]:
zero = fts(0)
self.assertEqual(zero.second, 0)
self.assertEqual(zero.microsecond, 0)
try:
minus_one = fts(-1e-6)
except OSError:
# localtime(-1) and gmtime(-1) is not supported on Windows
pass
else:
self.assertEqual(minus_one.second, 59)
self.assertEqual(minus_one.microsecond, 999999)
t = fts(-1e-8)
self.assertEqual(t, minus_one)
t = fts(-9e-7)
self.assertEqual(t, minus_one)
t = fts(-1e-7)
self.assertEqual(t, minus_one)
t = fts(1e-7)
self.assertEqual(t, zero)
t = fts(9e-7)
self.assertEqual(t, zero)
t = fts(0.99999949)
self.assertEqual(t.second, 0)
self.assertEqual(t.microsecond, 999999)
t = fts(0.9999999)
self.assertEqual(t.second, 0)
self.assertEqual(t.microsecond, 999999)
def fromtimestamp(timestamp):
"""Return the local date from a POSIX timestamp (like time.time())
This may raise ValueError, if the timestamp is out of the range of
values supported by the platform C localtime() function. It's common
for this to be restricted to years from 1970 through 2038. Note that
on non-POSIX systems that include leap seconds in their notion of a
timestamp, leap seconds are ignored by fromtimestamp().
"""
def timetuple():
"""Return a 9-element tuple of the form returned by time.localtime().
The hours, minutes and seconds are 0, and the DST flag is -1.
d.timetuple() is equivalent to
(d.year, d.month, d.day, 0, 0, 0, d.weekday(), d.toordinal() -
date(d.year, 1, 1).toordinal() + 1, -1)
"""
def timetuple():
"""Return a 9-element tuple of the form returned by time.localtime()."""
def test_fromtimestamp(self):
import time
ts = time.time()
expected = time.localtime(ts)
got = self.theclass.fromtimestamp(ts)
self.verify_field_equality(expected, got)
def test_fromtimestamp(self):
import time
ts = time.time()
expected = time.localtime(ts)
got = self.theclass.fromtimestamp(ts)
self.verify_field_equality(expected, got)
def test_microsecond_rounding(self):
for fts in [self.theclass.fromtimestamp,
self.theclass.utcfromtimestamp]:
zero = fts(0)
self.assertEqual(zero.second, 0)
self.assertEqual(zero.microsecond, 0)
one = fts(1e-6)
try:
minus_one = fts(-1e-6)
except OSError:
# localtime(-1) and gmtime(-1) is not supported on Windows
pass
else:
self.assertEqual(minus_one.second, 59)
self.assertEqual(minus_one.microsecond, 999999)
t = fts(-1e-8)
self.assertEqual(t, zero)
t = fts(-9e-7)
self.assertEqual(t, minus_one)
t = fts(-1e-7)
self.assertEqual(t, zero)
t = fts(-1/2**7)
self.assertEqual(t.second, 59)
self.assertEqual(t.microsecond, 992188)
t = fts(1e-7)
self.assertEqual(t, zero)
t = fts(9e-7)
self.assertEqual(t, one)
t = fts(0.99999949)
self.assertEqual(t.second, 0)
self.assertEqual(t.microsecond, 999999)
t = fts(0.9999999)
self.assertEqual(t.second, 1)
self.assertEqual(t.microsecond, 0)
t = fts(1/2**7)
self.assertEqual(t.second, 0)
self.assertEqual(t.microsecond, 7812)
def test_fromtimestamp(self):
import time
ts = time.time()
expected = time.localtime(ts)
got = self.theclass.fromtimestamp(ts)
self.verify_field_equality(expected, got)
def fromtimestamp(timestamp):
"""Return the local date from a POSIX timestamp (like time.time())
This may raise ValueError, if the timestamp is out of the range of
values supported by the platform C localtime() function. It's common
for this to be restricted to years from 1970 through 2038. Note that
on non-POSIX systems that include leap seconds in their notion of a
timestamp, leap seconds are ignored by fromtimestamp().
"""
def timetuple():
"""Return a 9-element tuple of the form returned by time.localtime().
The hours, minutes and seconds are 0, and the DST flag is -1.
d.timetuple() is equivalent to
(d.year, d.month, d.day, 0, 0, 0, d.weekday(), d.toordinal() -
date(d.year, 1, 1).toordinal() + 1, -1)
"""
def timetuple():
"""Return a 9-element tuple of the form returned by time.localtime()."""
def test_fromtimestamp(self):
import time
ts = time.time()
expected = time.localtime(ts)
got = self.theclass.fromtimestamp(ts)
self.verify_field_equality(expected, got)
def test_microsecond_rounding(self):
for fts in [self.theclass.fromtimestamp,
self.theclass.utcfromtimestamp]:
zero = fts(0)
self.assertEqual(zero.second, 0)
self.assertEqual(zero.microsecond, 0)
try:
minus_one = fts(-1e-6)
except OSError:
# localtime(-1) and gmtime(-1) is not supported on Windows
pass
else:
self.assertEqual(minus_one.second, 59)
self.assertEqual(minus_one.microsecond, 999999)
t = fts(-1e-8)
self.assertEqual(t, minus_one)
t = fts(-9e-7)
self.assertEqual(t, minus_one)
t = fts(-1e-7)
self.assertEqual(t, minus_one)
t = fts(1e-7)
self.assertEqual(t, zero)
t = fts(9e-7)
self.assertEqual(t, zero)
t = fts(0.99999949)
self.assertEqual(t.second, 0)
self.assertEqual(t.microsecond, 999999)
t = fts(0.9999999)
self.assertEqual(t.second, 0)
self.assertEqual(t.microsecond, 999999)