def evaluate_proposals(self, all_boxes, output_dir):
# for each image
for im_ind, index in enumerate(self.image_index):
filename = os.path.join(output_dir, index[5:] + '.txt')
print 'Writing kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
python类kitti_tracking()的实例源码
kitti_tracking.py 文件源码
项目:Automatic_Group_Photography_Enhancement
作者: Yuliang-Zou
项目源码
文件源码
阅读 15
收藏 0
点赞 0
评论 0
def evaluate_proposals(self, all_boxes, output_dir):
# for each image
for im_ind, index in enumerate(self.image_index):
filename = os.path.join(output_dir, index[5:] + '.txt')
print 'Writing kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
def evaluate_proposals(self, all_boxes, output_dir):
# for each image
for im_ind, index in enumerate(self.image_index):
filename = os.path.join(output_dir, index[5:] + '.txt')
print 'Writing kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
def evaluate_proposals(self, all_boxes, output_dir):
# for each image
for im_ind, index in enumerate(self.image_index):
filename = os.path.join(output_dir, index[5:] + '.txt')
print 'Writing kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
def evaluate_proposals(self, all_boxes, output_dir):
# for each image
for im_ind, index in enumerate(self.image_index):
filename = os.path.join(output_dir, index[5:] + '.txt')
print 'Writing kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
def evaluate_proposals(self, all_boxes, output_dir):
# for each image
for im_ind, index in enumerate(self.image_index):
filename = os.path.join(output_dir, index[5:] + '.txt')
print 'Writing kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
kitti_tracking.py 文件源码
项目:Automatic_Group_Photography_Enhancement
作者: Yuliang-Zou
项目源码
文件源码
阅读 15
收藏 0
点赞 0
评论 0
def _get_default_path(self):
"""
Return the default path where kitti_tracking is expected to be installed.
"""
return os.path.join(datasets.ROOT_DIR, 'data', 'KITTI_Tracking')
kitti_tracking.py 文件源码
项目:Automatic_Group_Photography_Enhancement
作者: Yuliang-Zou
项目源码
文件源码
阅读 22
收藏 0
点赞 0
评论 0
def evaluate_detections(self, all_boxes, output_dir):
# load the mapping for subcalss the alpha (viewpoint)
if self._image_set == 'training' and self._seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.float)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = float(words[3])
# for each image
for im_ind, index in enumerate(self.image_index):
filename = os.path.join(output_dir, index[5:] + '.txt')
print 'Writing kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
subcls = int(dets[k, 5])
cls_name = self.classes[self.subclass_mapping[subcls]]
assert (cls_name == cls), 'subclass not in class'
alpha = mapping[subcls]
f.write('{:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1 -1 -1 -1 {:.32f}\n'.format(\
cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
# write detection results into one file
kitti_tracking.py 文件源码
项目:Automatic_Group_Photography_Enhancement
作者: Yuliang-Zou
项目源码
文件源码
阅读 16
收藏 0
点赞 0
评论 0
def evaluate_detections_one_file(self, all_boxes, output_dir):
# load the mapping for subcalss the alpha (viewpoint)
if self._image_set == 'training' and self._seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.float)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = float(words[3])
# open results file
filename = os.path.join(output_dir, self._seq_name+'.txt')
print 'Writing all kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each image
for im_ind, index in enumerate(self.image_index):
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
subcls = int(dets[k, 5])
cls_name = self.classes[self.subclass_mapping[subcls]]
assert (cls_name == cls), 'subclass not in class'
alpha = mapping[subcls]
f.write('{:d} -1 {:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1000 -1000 -1000 -10 {:f}\n'.format(\
im_ind, cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
def _get_default_path(self):
"""
Return the default path where kitti_tracking is expected to be installed.
"""
return os.path.join(datasets.ROOT_DIR, 'data', 'KITTI_Tracking')
def evaluate_detections(self, all_boxes, output_dir):
# load the mapping for subcalss the alpha (viewpoint)
if self._image_set == 'training' and self._seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.float)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = float(words[3])
# for each image
for im_ind, index in enumerate(self.image_index):
filename = os.path.join(output_dir, index[5:] + '.txt')
print 'Writing kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
subcls = int(dets[k, 5])
cls_name = self.classes[self.subclass_mapping[subcls]]
assert (cls_name == cls), 'subclass not in class'
alpha = mapping[subcls]
f.write('{:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1 -1 -1 -1 {:.32f}\n'.format(\
cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
# write detection results into one file
def evaluate_detections_one_file(self, all_boxes, output_dir):
# load the mapping for subcalss the alpha (viewpoint)
if self._image_set == 'training' and self._seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.float)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = float(words[3])
# open results file
filename = os.path.join(output_dir, self._seq_name+'.txt')
print 'Writing all kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each image
for im_ind, index in enumerate(self.image_index):
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
subcls = int(dets[k, 5])
cls_name = self.classes[self.subclass_mapping[subcls]]
assert (cls_name == cls), 'subclass not in class'
alpha = mapping[subcls]
f.write('{:d} -1 {:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1000 -1000 -1000 -10 {:f}\n'.format(\
im_ind, cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
def _get_default_path(self):
"""
Return the default path where kitti_tracking is expected to be installed.
"""
return os.path.join(datasets.ROOT_DIR, 'data', 'KITTI_Tracking')
def evaluate_detections(self, all_boxes, output_dir):
# load the mapping for subcalss the alpha (viewpoint)
if self._image_set == 'training' and self._seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.float)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = float(words[3])
# for each image
for im_ind, index in enumerate(self.image_index):
filename = os.path.join(output_dir, index[5:] + '.txt')
print 'Writing kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
subcls = int(dets[k, 5])
cls_name = self.classes[self.subclass_mapping[subcls]]
assert (cls_name == cls), 'subclass not in class'
alpha = mapping[subcls]
f.write('{:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1 -1 -1 -1 {:.32f}\n'.format(\
cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
# write detection results into one file
def evaluate_detections_one_file(self, all_boxes, output_dir):
# load the mapping for subcalss the alpha (viewpoint)
if self._image_set == 'training' and self._seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.float)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = float(words[3])
# open results file
filename = os.path.join(output_dir, self._seq_name+'.txt')
print 'Writing all kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each image
for im_ind, index in enumerate(self.image_index):
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
subcls = int(dets[k, 5])
cls_name = self.classes[self.subclass_mapping[subcls]]
assert (cls_name == cls), 'subclass not in class'
alpha = mapping[subcls]
f.write('{:d} -1 {:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1000 -1000 -1000 -10 {:f}\n'.format(\
im_ind, cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
def _get_default_path(self):
"""
Return the default path where kitti_tracking is expected to be installed.
"""
return os.path.join(datasets.ROOT_DIR, 'data', 'KITTI_Tracking')
def evaluate_detections(self, all_boxes, output_dir):
# load the mapping for subcalss the alpha (viewpoint)
if self._image_set == 'training' and self._seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.float)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = float(words[3])
# for each image
for im_ind, index in enumerate(self.image_index):
filename = os.path.join(output_dir, index[5:] + '.txt')
print 'Writing kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
subcls = int(dets[k, 5])
cls_name = self.classes[self.subclass_mapping[subcls]]
assert (cls_name == cls), 'subclass not in class'
alpha = mapping[subcls]
f.write('{:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1 -1 -1 -1 {:.32f}\n'.format(\
cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
# write detection results into one file
def evaluate_detections_one_file(self, all_boxes, output_dir):
# load the mapping for subcalss the alpha (viewpoint)
if self._image_set == 'training' and self._seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.float)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = float(words[3])
# open results file
filename = os.path.join(output_dir, self._seq_name+'.txt')
print 'Writing all kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each image
for im_ind, index in enumerate(self.image_index):
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
subcls = int(dets[k, 5])
cls_name = self.classes[self.subclass_mapping[subcls]]
assert (cls_name == cls), 'subclass not in class'
alpha = mapping[subcls]
f.write('{:d} -1 {:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1000 -1000 -1000 -10 {:f}\n'.format(\
im_ind, cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
def _get_default_path(self):
"""
Return the default path where kitti_tracking is expected to be installed.
"""
return os.path.join(datasets.ROOT_DIR, 'data', 'KITTI_Tracking')
def evaluate_detections(self, all_boxes, output_dir):
# load the mapping for subcalss the alpha (viewpoint)
if self._image_set == 'training' and self._seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.float)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = float(words[3])
# for each image
for im_ind, index in enumerate(self.image_index):
filename = os.path.join(output_dir, index[5:] + '.txt')
print 'Writing kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
subcls = int(dets[k, 5])
cls_name = self.classes[self.subclass_mapping[subcls]]
assert (cls_name == cls), 'subclass not in class'
alpha = mapping[subcls]
f.write('{:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1 -1 -1 -1 {:.32f}\n'.format(\
cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
# write detection results into one file
def evaluate_detections_one_file(self, all_boxes, output_dir):
# load the mapping for subcalss the alpha (viewpoint)
if self._image_set == 'training' and self._seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.float)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = float(words[3])
# open results file
filename = os.path.join(output_dir, self._seq_name+'.txt')
print 'Writing all kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each image
for im_ind, index in enumerate(self.image_index):
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
subcls = int(dets[k, 5])
cls_name = self.classes[self.subclass_mapping[subcls]]
assert (cls_name == cls), 'subclass not in class'
alpha = mapping[subcls]
f.write('{:d} -1 {:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1000 -1000 -1000 -10 {:f}\n'.format(\
im_ind, cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
def _get_default_path(self):
"""
Return the default path where kitti_tracking is expected to be installed.
"""
return os.path.join(datasets.ROOT_DIR, 'data', 'KITTI_Tracking')
def evaluate_detections(self, all_boxes, output_dir):
# load the mapping for subcalss the alpha (viewpoint)
if self._image_set == 'training' and self._seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.float)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = float(words[3])
# for each image
for im_ind, index in enumerate(self.image_index):
filename = os.path.join(output_dir, index[5:] + '.txt')
print 'Writing kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
subcls = int(dets[k, 5])
cls_name = self.classes[self.subclass_mapping[subcls]]
assert (cls_name == cls), 'subclass not in class'
alpha = mapping[subcls]
f.write('{:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1 -1 -1 -1 {:.32f}\n'.format(\
cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
# write detection results into one file
def evaluate_detections_one_file(self, all_boxes, output_dir):
# load the mapping for subcalss the alpha (viewpoint)
if self._image_set == 'training' and self._seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.float)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = float(words[3])
# open results file
filename = os.path.join(output_dir, self._seq_name+'.txt')
print 'Writing all kitti_tracking results to file ' + filename
with open(filename, 'wt') as f:
# for each image
for im_ind, index in enumerate(self.image_index):
# for each class
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
for k in xrange(dets.shape[0]):
subcls = int(dets[k, 5])
cls_name = self.classes[self.subclass_mapping[subcls]]
assert (cls_name == cls), 'subclass not in class'
alpha = mapping[subcls]
f.write('{:d} -1 {:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1000 -1000 -1000 -10 {:f}\n'.format(\
im_ind, cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
kitti_tracking.py 文件源码
项目:Automatic_Group_Photography_Enhancement
作者: Yuliang-Zou
项目源码
文件源码
阅读 15
收藏 0
点赞 0
评论 0
def __init__(self, image_set, seq_name, kitti_tracking_path=None):
datasets.imdb.__init__(self, 'kitti_tracking_' + image_set + '_' + seq_name)
self._image_set = image_set
self._seq_name = seq_name
self._kitti_tracking_path = self._get_default_path() if kitti_tracking_path is None \
else kitti_tracking_path
self._data_path = os.path.join(self._kitti_tracking_path, image_set, 'image_02')
self._classes = ('__background__', 'Car', 'Pedestrian', 'Cyclist')
self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
self._image_ext = '.png'
self._image_index = self._load_image_set_index()
# Default to roidb handler
if cfg.IS_RPN:
self._roidb_handler = self.gt_roidb
else:
self._roidb_handler = self.region_proposal_roidb
# num of subclasses
if image_set == 'training' and seq_name != 'trainval':
self._num_subclasses = 220 + 1
else:
self._num_subclasses = 472 + 1
# load the mapping for subcalss to class
if image_set == 'training' and seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.int)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = self._class_to_ind[words[1]]
self._subclass_mapping = mapping
self.config = {'top_k': 100000}
# statistics for computing recall
self._num_boxes_all = np.zeros(self.num_classes, dtype=np.int)
self._num_boxes_covered = np.zeros(self.num_classes, dtype=np.int)
self._num_boxes_proposal = 0
assert os.path.exists(self._kitti_tracking_path), \
'kitti_tracking path does not exist: {}'.format(self._kitti_tracking_path)
assert os.path.exists(self._data_path), \
'Path does not exist: {}'.format(self._data_path)
def __init__(self, image_set, seq_name, kitti_tracking_path=None):
datasets.imdb.__init__(self, 'kitti_tracking_' + image_set + '_' + seq_name)
self._image_set = image_set
self._seq_name = seq_name
self._kitti_tracking_path = self._get_default_path() if kitti_tracking_path is None \
else kitti_tracking_path
self._data_path = os.path.join(self._kitti_tracking_path, image_set, 'image_02')
self._classes = ('__background__', 'Car', 'Pedestrian', 'Cyclist')
self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
self._image_ext = '.png'
self._image_index = self._load_image_set_index()
# Default to roidb handler
if cfg.IS_RPN:
self._roidb_handler = self.gt_roidb
else:
self._roidb_handler = self.region_proposal_roidb
# num of subclasses
if image_set == 'training' and seq_name != 'trainval':
self._num_subclasses = 220 + 1
else:
self._num_subclasses = 472 + 1
# load the mapping for subcalss to class
if image_set == 'training' and seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.int)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = self._class_to_ind[words[1]]
self._subclass_mapping = mapping
self.config = {'top_k': 100000}
# statistics for computing recall
self._num_boxes_all = np.zeros(self.num_classes, dtype=np.int)
self._num_boxes_covered = np.zeros(self.num_classes, dtype=np.int)
self._num_boxes_proposal = 0
assert os.path.exists(self._kitti_tracking_path), \
'kitti_tracking path does not exist: {}'.format(self._kitti_tracking_path)
assert os.path.exists(self._data_path), \
'Path does not exist: {}'.format(self._data_path)
def __init__(self, image_set, seq_name, kitti_tracking_path=None):
datasets.imdb.__init__(self, 'kitti_tracking_' + image_set + '_' + seq_name)
self._image_set = image_set
self._seq_name = seq_name
self._kitti_tracking_path = self._get_default_path() if kitti_tracking_path is None \
else kitti_tracking_path
self._data_path = os.path.join(self._kitti_tracking_path, image_set, 'image_02')
self._classes = ('__background__', 'Car', 'Pedestrian', 'Cyclist')
self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
self._image_ext = '.png'
self._image_index = self._load_image_set_index()
# Default to roidb handler
if cfg.IS_RPN:
self._roidb_handler = self.gt_roidb
else:
self._roidb_handler = self.region_proposal_roidb
# num of subclasses
if image_set == 'training' and seq_name != 'trainval':
self._num_subclasses = 220 + 1
else:
self._num_subclasses = 472 + 1
# load the mapping for subcalss to class
if image_set == 'training' and seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.int)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = self._class_to_ind[words[1]]
self._subclass_mapping = mapping
self.config = {'top_k': 100000}
# statistics for computing recall
self._num_boxes_all = np.zeros(self.num_classes, dtype=np.int)
self._num_boxes_covered = np.zeros(self.num_classes, dtype=np.int)
self._num_boxes_proposal = 0
assert os.path.exists(self._kitti_tracking_path), \
'kitti_tracking path does not exist: {}'.format(self._kitti_tracking_path)
assert os.path.exists(self._data_path), \
'Path does not exist: {}'.format(self._data_path)
def __init__(self, image_set, seq_name, kitti_tracking_path=None):
datasets.imdb.__init__(self, 'kitti_tracking_' + image_set + '_' + seq_name)
self._image_set = image_set
self._seq_name = seq_name
self._kitti_tracking_path = self._get_default_path() if kitti_tracking_path is None \
else kitti_tracking_path
self._data_path = os.path.join(self._kitti_tracking_path, image_set, 'image_02')
self._classes = ('__background__', 'Car', 'Pedestrian', 'Cyclist')
self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
self._image_ext = '.png'
self._image_index = self._load_image_set_index()
# Default to roidb handler
if cfg.IS_RPN:
self._roidb_handler = self.gt_roidb
else:
self._roidb_handler = self.region_proposal_roidb
# num of subclasses
if image_set == 'training' and seq_name != 'trainval':
self._num_subclasses = 220 + 1
else:
self._num_subclasses = 472 + 1
# load the mapping for subcalss to class
if image_set == 'training' and seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.int)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = self._class_to_ind[words[1]]
self._subclass_mapping = mapping
self.config = {'top_k': 100000}
# statistics for computing recall
self._num_boxes_all = np.zeros(self.num_classes, dtype=np.int)
self._num_boxes_covered = np.zeros(self.num_classes, dtype=np.int)
self._num_boxes_proposal = 0
assert os.path.exists(self._kitti_tracking_path), \
'kitti_tracking path does not exist: {}'.format(self._kitti_tracking_path)
assert os.path.exists(self._data_path), \
'Path does not exist: {}'.format(self._data_path)
def __init__(self, image_set, seq_name, kitti_tracking_path=None):
datasets.imdb.__init__(self, 'kitti_tracking_' + image_set + '_' + seq_name)
self._image_set = image_set
self._seq_name = seq_name
self._kitti_tracking_path = self._get_default_path() if kitti_tracking_path is None \
else kitti_tracking_path
self._data_path = os.path.join(self._kitti_tracking_path, image_set, 'image_02')
self._classes = ('__background__', 'Car', 'Pedestrian', 'Cyclist')
self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
self._image_ext = '.png'
self._image_index = self._load_image_set_index()
# Default to roidb handler
if cfg.IS_RPN:
self._roidb_handler = self.gt_roidb
else:
self._roidb_handler = self.region_proposal_roidb
# num of subclasses
if image_set == 'training' and seq_name != 'trainval':
self._num_subclasses = 220 + 1
else:
self._num_subclasses = 472 + 1
# load the mapping for subcalss to class
if image_set == 'training' and seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.int)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = self._class_to_ind[words[1]]
self._subclass_mapping = mapping
self.config = {'top_k': 100000}
# statistics for computing recall
self._num_boxes_all = np.zeros(self.num_classes, dtype=np.int)
self._num_boxes_covered = np.zeros(self.num_classes, dtype=np.int)
self._num_boxes_proposal = 0
assert os.path.exists(self._kitti_tracking_path), \
'kitti_tracking path does not exist: {}'.format(self._kitti_tracking_path)
assert os.path.exists(self._data_path), \
'Path does not exist: {}'.format(self._data_path)
def __init__(self, image_set, seq_name, kitti_tracking_path=None):
datasets.imdb.__init__(self, 'kitti_tracking_' + image_set + '_' + seq_name)
self._image_set = image_set
self._seq_name = seq_name
self._kitti_tracking_path = self._get_default_path() if kitti_tracking_path is None \
else kitti_tracking_path
self._data_path = os.path.join(self._kitti_tracking_path, image_set, 'image_02')
self._classes = ('__background__', 'Car', 'Pedestrian', 'Cyclist')
self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
self._image_ext = '.png'
self._image_index = self._load_image_set_index()
# Default to roidb handler
if cfg.IS_RPN:
self._roidb_handler = self.gt_roidb
else:
self._roidb_handler = self.region_proposal_roidb
# num of subclasses
if image_set == 'training' and seq_name != 'trainval':
self._num_subclasses = 220 + 1
else:
self._num_subclasses = 472 + 1
# load the mapping for subcalss to class
if image_set == 'training' and seq_name != 'trainval':
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt')
else:
filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt')
assert os.path.exists(filename), 'Path does not exist: {}'.format(filename)
mapping = np.zeros(self._num_subclasses, dtype=np.int)
with open(filename) as f:
for line in f:
words = line.split()
subcls = int(words[0])
mapping[subcls] = self._class_to_ind[words[1]]
self._subclass_mapping = mapping
self.config = {'top_k': 100000}
# statistics for computing recall
self._num_boxes_all = np.zeros(self.num_classes, dtype=np.int)
self._num_boxes_covered = np.zeros(self.num_classes, dtype=np.int)
self._num_boxes_proposal = 0
assert os.path.exists(self._kitti_tracking_path), \
'kitti_tracking path does not exist: {}'.format(self._kitti_tracking_path)
assert os.path.exists(self._data_path), \
'Path does not exist: {}'.format(self._data_path)