def polygonize_cv(mask, epsilon=1., min_area=10.):
contours, hierarchy = cv2.findContours(mask, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_KCOS)
# create approximate contours to have reasonable submission size
approx_contours = [cv2.approxPolyDP(cnt, epsilon, True)
for cnt in contours]
approx_contours = contours
if not contours:
return MultiPolygon()
# now messy stuff to associate parent and child contours
cnt_children = defaultdict(list)
child_contours = set()
assert hierarchy.shape[0] == 1
# http://docs.opencv.org/3.1.0/d9/d8b/tutorial_py_contours_hierarchy.html
for idx, (_, _, _, parent_idx) in enumerate(hierarchy[0]):
if parent_idx != -1:
child_contours.add(idx)
cnt_children[parent_idx].append(approx_contours[idx])
# create actual polygons filtering by area (removes artifacts)
all_polygons = []
for idx, cnt in enumerate(approx_contours):
if idx not in child_contours and cv2.contourArea(cnt) >= min_area:
assert cnt.shape[1] == 1
poly = Polygon(
shell=cnt[:, 0, :],
holes=[c[:, 0, :] for c in cnt_children.get(idx, [])
if cv2.contourArea(c) >= min_area])
all_polygons.append(poly)
# approximating polygons might have created invalid ones, fix them
all_polygons = MultiPolygon(all_polygons)
if not all_polygons.is_valid:
all_polygons = all_polygons.buffer(0)
# Sometimes buffer() converts a simple Multipolygon to just a Polygon,
# need to keep it a Multi throughout
if all_polygons.type == 'Polygon':
all_polygons = MultiPolygon([all_polygons])
return all_polygons
python类CHAIN_APPROX_TC89_KCOS的实例源码
utils.py 文件源码
项目:kaggle-dstl-satellite-imagery-feature-detection
作者: u1234x1234
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
submission.py 文件源码
项目:Dstl-Satellite-Imagery-Feature-Detection
作者: DeepVoltaire
项目源码
文件源码
阅读 30
收藏 0
点赞 0
评论 0
def mask_to_polygons(mask, epsilon=1, min_area=1.):
"""
Create a Multipolygon from a mask of 0-1 pixels.
"""
# find contours of mask of pixels
image, contours, hierarchy = cv2.findContours(
((mask == 1) * 255).astype(np.uint8),
cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_KCOS)
# create approximate contours to have reasonable submission size
approx_contours = [cv2.approxPolyDP(cnt, epsilon, True)
for cnt in contours]
if not contours:
return MultiPolygon()
# now messy stuff to associate parent and child contours
cnt_children = defaultdict(list)
child_contours = set()
assert hierarchy.shape[0] == 1
# http://docs.opencv.org/3.1.0/d9/d8b/tutorial_py_contours_hierarchy.html
for idx, (_, _, _, parent_idx) in enumerate(hierarchy[0]):
if parent_idx != -1:
child_contours.add(idx)
cnt_children[parent_idx].append(approx_contours[idx])
# create actual polygons filtering by area (removes artifacts)
all_polygons = []
for idx, cnt in enumerate(approx_contours):
if idx not in child_contours and cv2.contourArea(cnt) >= min_area:
assert cnt.shape[1] == 1
poly = Polygon(
shell=cnt[:, 0, :],
holes=[c[:, 0, :] for c in cnt_children.get(idx, [])
if cv2.contourArea(c) >= min_area])
all_polygons.append(poly)
# approximating polygons might have created invalid ones, fix them
all_polygons = MultiPolygon(all_polygons)
if not all_polygons.is_valid:
all_polygons = all_polygons.buffer(0)
# Sometimes buffer() converts a simple Multipolygon to just a Polygon,
# need to keep it a Multi throughout
if all_polygons.type == 'Polygon':
all_polygons = MultiPolygon([all_polygons])
return all_polygons
def find_contours(image):
# Attempt to locate the goals by finding all contours not enclosed within another.
_, contours, _ = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)
return contours
def contours(self):
if self._contours is None:
self._contours = []
try:
contours, hierarchy = cv2.findContours(self.ndarray, cv2.RETR_TREE, cv2.CHAIN_APPROX_TC89_KCOS)
for contour in contours:
self._contours.append(sharkcv.Contour(contour))
except:
pass
return self._contours
# Filter contours by any sharkcv.Contour property
def detect_contours(self):
blurred = cv2.GaussianBlur(self.src, (self.kernel_size, self.kernel_size), self.sigma)
# apply canny detector
detected_edges = cv2.Canny(blurred, self.threshold, self.threshold * self.ratio, apertureSize=self.apertureSize, L2gradient=True)
if self.use_dilate:
kernel = np.ones((3, 3), np.uint8)
detected_edges = cv2.morphologyEx(detected_edges, cv2.MORPH_CLOSE, kernel)
self.contours_img, self.simple_contours, self.hierarchy = cv2.findContours(detected_edges.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_KCOS)
# pdb.gimp_message(self.hierarchy)
_, self.full_contours, _ = cv2.findContours(detected_edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
def mask_to_polygons(mask: np.ndarray, epsilon=5., min_area=10.,
fix=False) -> MultiPolygon:
if fix:
epsilon *= 4
image, contours, hierarchy = cv2.findContours(
((mask == 1) * 255).astype(np.uint8),
cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_KCOS)
approx_contours = [cv2.approxPolyDP(cnt, epsilon, True) for cnt in contours]
if not contours:
return MultiPolygon()
cnt_children = defaultdict(list)
child_contours = set()
assert hierarchy.shape[0] == 1
# http://docs.opencv.org/3.1.0/d9/d8b/tutorial_py_contours_hierarchy.html
for idx, (_, _, _, parent_idx) in enumerate(hierarchy[0]):
if parent_idx != -1:
child_contours.add(idx)
cnt_children[parent_idx].append(approx_contours[idx])
all_polygons = []
for idx, cnt in enumerate(approx_contours):
if idx not in child_contours and cv2.contourArea(cnt) >= min_area:
assert cnt.shape[1] == 1
poly = Polygon(
shell=cnt[:, 0, :],
holes=[c[:, 0, :] for c in cnt_children.get(idx, [])
if cv2.contourArea(c) >= min_area])
all_polygons.append(poly)
all_polygons = to_multipolygon(MultiPolygon(all_polygons).buffer(0))
# return all_polygons - this was used to generate the final merges
if fix:
all_polygons = all_polygons.buffer(-1e-7)
all_polygons = all_polygons.buffer(-1e-7)
# FIXME - a great idea, but should be done after conversion to final coordinates
all_polygons = shapely.wkt.loads(
shapely.wkt.dumps(all_polygons, rounding_precision=8))
while not all_polygons.is_valid:
all_polygons = to_multipolygon(all_polygons.buffer(0))
all_polygons = shapely.wkt.loads(
shapely.wkt.dumps(all_polygons, rounding_precision=8))
return all_polygons
masks.py 文件源码
项目:kaggle-dstl-satellite-imagery-feature-detection
作者: alno
项目源码
文件源码
阅读 29
收藏 0
点赞 0
评论 0
def mask_to_poly(mask, xymax, epsilon=2, min_area=1., threshold=0.5):
# __author__ = Konstantin Lopuhin
# https://www.kaggle.com/lopuhin/dstl-satellite-imagery-feature-detection/full-pipeline-demo-poly-pixels-ml-poly
# first, find contours with cv2: it's much faster than shapely
contours, hierarchy = cv2.findContours(((mask >= threshold) * 255).astype(np.uint8), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_KCOS)
# create approximate contours to have reasonable submission size
approx_contours = [cv2.approxPolyDP(cnt, epsilon, True) for cnt in contours]
if not contours:
return MultiPolygon()
# now messy stuff to associate parent and child contours
cnt_children = defaultdict(list)
child_contours = set()
assert hierarchy.shape[0] == 1
# http://docs.opencv.org/3.1.0/d9/d8b/tutorial_py_contours_hierarchy.html
for idx, (_, _, _, parent_idx) in enumerate(hierarchy[0]):
if parent_idx != -1:
child_contours.add(idx)
cnt_children[parent_idx].append(approx_contours[idx])
# create actual polygons filtering by area (removes artifacts)
all_polygons = []
for idx, cnt in enumerate(approx_contours):
if idx not in child_contours and cv2.contourArea(cnt) >= min_area:
assert cnt.shape[1] == 1
poly = Polygon(
shell=cnt[:, 0, :],
holes=[c[:, 0, :] for c in cnt_children.get(idx, [])
if cv2.contourArea(c) >= min_area])
all_polygons.append(poly)
# approximating polygons might have created invalid ones, fix them
all_polygons = MultiPolygon(all_polygons).buffer(0)
# Sometimes buffer() converts a simple Multipolygon to just a Polygon,
# need to keep it a Multi throughout
if all_polygons.type == 'Polygon':
all_polygons = MultiPolygon([all_polygons])
return convert_poly_to_geo_coords(all_polygons, mask.shape, xymax)