def im_detect_and_describe(img, mask=None, detector='dense', descriptor='SIFT', colorspace='gray',
step=4, levels=7, scale=np.sqrt(2)):
"""
Describe image using dense sampling / specific detector-descriptor combination.
"""
detector = get_detector(detector=detector, step=step, levels=levels, scale=scale)
extractor = cv2.DescriptorExtractor_create(descriptor)
try:
kpts = detector.detect(img, mask=mask)
kpts, desc = extractor.compute(img, kpts)
if descriptor == 'SIFT':
kpts, desc = root_sift(kpts, desc)
pts = np.vstack([kp.pt for kp in kpts]).astype(np.int32)
return pts, desc
except Exception as e:
print 'im_detect_and_describe', e
return None, None
python类DescriptorExtractor_create()的实例源码
facegroup.py 文件源码
项目:Automatic_Group_Photography_Enhancement
作者: Yuliang-Zou
项目源码
文件源码
阅读 19
收藏 0
点赞 0
评论 0
def obtainSimilarityScore(img1,img2):
detector = cv2.FeatureDetector_create("SIFT")
descriptor = cv2.DescriptorExtractor_create("SIFT")
skp = detector.detect(img1)
skp, sd = descriptor.compute(img1, skp)
tkp = detector.detect(img2)
tkp, td = descriptor.compute(img2, tkp)
num1 = 0
for i in range(len(sd)):
kp_value_min = np.inf
kp_value_2min = np.inf
for j in range(len(td)):
kp_value = 0
for k in range(128):
kp_value = (sd[i][k]-td[j][k]) *(sd[i][k]-td[j][k]) + kp_value
if kp_value < kp_value_min:
kp_value_2min = kp_value_min
kp_value_min = kp_value
if kp_value_min < 0.8*kp_value_2min:
num1 = num1+1
num2 = 0
for i in range(len(td)):
kp_value_min = np.inf
kp_value_2min = np.inf
for j in range(len(sd)):
kp_value = 0
for k in range(128):
kp_value = (td[i][k]-sd[j][k]) *(td[i][k]-sd[j][k]) + kp_value
if kp_value < kp_value_min:
kp_value_2min = kp_value_min
kp_value_min = kp_value
if kp_value_min < 0.8*kp_value_2min:
num2 = num2+1
K1 = num1*1.0/len(skp)
K2 = num2*1.0/len(tkp)
SimilarityScore = 100*(K1+K2)*1.0/2
return SimilarityScore
def calculate_feature(bin_data):
"""
calculate the feature data of an image
parameter :
'bin_data' is the binary stream format of an image
return value :
a tuple of ( keypoints, descriptors, (height,width) )
keypoints is like [ pt1, pt2, pt3, ... ]
descriptors is a numpy array
"""
buff=numpy.frombuffer(bin_data,numpy.uint8)
img_obj=cv2.imdecode(buff,cv2.CV_LOAD_IMAGE_GRAYSCALE)
surf=cv2.FeatureDetector_create("SURF")
surf.setInt("hessianThreshold",400)
surf_extractor=cv2.DescriptorExtractor_create("SURF")
keypoints=surf.detect(img_obj,None)
keypoints,descriptors=surf_extractor.compute(img_obj,keypoints)
res_keypoints=[]
for point in keypoints:
res_keypoints.append(point.pt)
del buff
del surf
del surf_extractor
del keypoints
return res_keypoints,numpy.array(descriptors),img_obj.shape
def __init__(self, detector_name, feat_type):
self.feat_type = feat_type
self.detector = cv2.FeatureDetector_create(detector_name)
self.descriptor_ex = cv2.DescriptorExtractor_create(feat_type)
def main(image_file):
image = Image.open(image_file)
if image is None:
print 'Could not load image "%s"' % sys.argv[1]
return
image = np.array(image.convert('RGB'), dtype=np.uint8)
image = image[:, :, ::-1].copy()
winSize = (200, 200)
stepSize = 32
roi = extractRoi(image, winSize, stepSize)
weight_map, mask_scale = next(roi)
samples = [(rect, scale, cv2.cvtColor(window, cv2.COLOR_BGR2GRAY))
for rect, scale, window in roi]
X_test = [window for rect, scale, window in samples]
coords = [(rect, scale) for rect, scale, window in samples]
extractor = cv2.FeatureDetector_create('SURF')
detector = cv2.DescriptorExtractor_create('SURF')
affine = AffineInvariant(extractor, detector)
saved = pickle.load(open('classifier.pkl', 'rb'))
feature_transform = saved['pipe']
model = saved['model']
print 'Extracting Affine transform invariant features'
affine_invariant_features = affine.transform(X_test)
print 'Matching features with template'
features = feature_transform.transform(affine_invariant_features)
rects = classify(model, features, coords, weight_map, mask_scale)
for (left, top, right, bottom) in non_max_suppression_fast(rects, 0.4):
cv2.rectangle(image, (left, top), (right, bottom), (0, 0, 0), 10)
cv2.rectangle(image, (left, top), (right, bottom), (32, 32, 255), 5)
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.show()