def find_squares(img):
img = cv2.GaussianBlur(img, (5, 5), 0)
squares = []
for gray in cv2.split(img):
for thrs in xrange(0, 255, 26):
if thrs == 0:
bin = cv2.Canny(gray, 0, 50, apertureSize=5)
bin = cv2.dilate(bin, None)
else:
retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
cnt_len = cv2.arcLength(cnt, True)
cnt = cv2.approxPolyDP(cnt, 0.02 * cnt_len, True)
if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
cnt = cnt.reshape(-1, 2)
max_cos = np.max([angle_cos(cnt[i], cnt[(i + 1) % 4], cnt[(i + 2) % 4]) for i in xrange(4)])
if max_cos < 0.1:
squares.append(cnt)
return squares
python类isContourConvex()的实例源码
def find_squares(img):
img = cv2.GaussianBlur(img, (5, 5), 0)
squares = []
for gray in cv2.split(img):
for thrs in xrange(0, 255, 26):
if thrs == 0:
bin = cv2.Canny(gray, 0, 50, apertureSize=5)
bin = cv2.dilate(bin, None)
else:
_retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
contours, _hierarchy = find_contours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
cnt_len = cv2.arcLength(cnt, True)
cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
area = cv2.contourArea(cnt)
if len(cnt) == 4 and 20 < area < 1000 and cv2.isContourConvex(cnt):
cnt = cnt.reshape(-1, 2)
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
if max_cos < 0.1:
if (1 - (float(w) / float(h)) <= 0.07 and 1 - (float(h) / float(w)) <= 0.07):
squares.append(cnt)
return squares
def find_squares(img, cos_limit = 0.1):
print('search for squares with threshold %f' % cos_limit)
img = cv2.GaussianBlur(img, (5, 5), 0)
squares = []
for gray in cv2.split(img):
for thrs in xrange(0, 255, 26):
if thrs == 0:
bin = cv2.Canny(gray, 0, 50, apertureSize=5)
bin = cv2.dilate(bin, None)
else:
retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
cnt_len = cv2.arcLength(cnt, True)
cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
cnt = cnt.reshape(-1, 2)
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
if max_cos < cos_limit :
squares.append(cnt)
else:
#print('dropped a square with max_cos %f' % max_cos)
pass
return squares
###
### Version V2. Collect meta-data along the way, with commentary added.
###
def get_rectangles(contours):
rectangles = []
for contour in contours:
epsilon = 0.04*cv2.arcLength(contour,True)
hull = cv2.convexHull(contour)
approx = cv2.approxPolyDP(hull,epsilon,True)
if (len(approx) == 4 and cv2.isContourConvex(approx)):
rectangles.append(approx)
return rectangles
def get_contours(image, polydb=0.1, contour_range=7):
# find the contours in the edged image, keeping only the largest ones, and initialize the screen contour
contours = _findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(contours, key = cv2.contourArea, reverse = True)[:contour_range]
# loop over the contours
screenCnt = None
for c in cnts:
# approximate the contour
peri = cv2.arcLength(c, True) #finds the Contour Perimeter
approx = cv2.approxPolyDP(c, polydb * peri, True)
# if our approximated contour has four points, then we can assume that we have found our screen
if len(approx) == 4:
screenCnt = approx
break
if screenCnt is None:
raise EdgeNotFound()
# sometimes the algorythm finds a strange non-convex shape. The shape conforms to the card but its not complete, so then just complete the shape into a convex form
if not cv2.isContourConvex(screenCnt):
screenCnt = cv2.convexHull(screenCnt)
x,y,w,h = cv2.boundingRect(screenCnt)
screenCnt = numpy.array([[[x, y]], [[x+w, y]], [[x+w, y+h]], [[x, y+h]]])
return screenCnt
def cannyThresholding(self, contour_retrieval_mode = cv2.RETR_LIST):
'''
contour_retrieval_mode is passed through as second argument to cv2.findContours
'''
# Attempt to match edges found in blue, green or red channels : collect all
channel = 0
for gray in cv2.split(self.img):
channel += 1
print('channel %d ' % channel)
title = self.tgen.next('channel-%d' % channel)
if self.show: ImageViewer(gray).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
found = {}
for thrs in xrange(0, 255, 26):
print('Using threshold %d' % thrs)
if thrs == 0:
print('First step')
bin = cv2.Canny(gray, 0, 50, apertureSize=5)
title = self.tgen.next('canny-%d' % channel)
if self.show: ImageViewer(bin).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
bin = cv2.dilate(bin, None)
title = self.tgen.next('canny-dilate-%d' % channel)
if self.show: ImageViewer(bin).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
else:
retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
title = self.tgen.next('channel-%d-threshold-%d' % (channel, thrs))
if self.show: ImageViewer(bin).show(window='Next threshold (n to continue)', destroy = self.destroy, info = self.info, thumbnailfn = title)
bin, contours, hierarchy = cv2.findContours(bin, contour_retrieval_mode, cv2.CHAIN_APPROX_SIMPLE)
title = self.tgen.next('channel-%d-threshold-%d-contours' % (channel, thrs))
if self.show: ImageViewer(bin).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
if contour_retrieval_mode == cv2.RETR_LIST or contour_retrieval_mode == cv2.RETR_EXTERNAL:
filteredContours = contours
else:
filteredContours = []
h = hierarchy[0]
for component in zip(contours, h):
currentContour = component[0]
currentHierarchy = component[1]
if currentHierarchy[3] < 0:
# Found the outermost parent component
filteredContours.append(currentContour)
print('Contours filtered. Input %d Output %d' % (len(contours), len(filteredContours)))
time.sleep(5)
for cnt in filteredContours:
cnt_len = cv2.arcLength(cnt, True)
cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
cnt_len = len(cnt)
cnt_area = cv2.contourArea(cnt)
cnt_isConvex = cv2.isContourConvex(cnt)
if cnt_len == 4 and (cnt_area > self.area_min and cnt_area < self.area_max) and cnt_isConvex:
cnt = cnt.reshape(-1, 2)
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
if max_cos < self.cos_limit :
sq = Square(cnt, cnt_area, cnt_isConvex, max_cos)
self.squares.append(sq)
else:
#print('dropped a square with max_cos %f' % max_cos)
pass
found[thrs] = len(self.squares)
print('Found %d quadrilaterals with threshold %d' % (len(self.squares), thrs))
def get_contours(image, polydb=0.03, contour_range=5, show=False):
# find the contours in the edged image, keeping only the largest ones, and initialize the screen contour
# if cv2version == 3: im2, contours, hierarchy = cv2.findContours(image.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
contours = _findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(contours, key = cv2.contourArea, reverse = True)[:contour_range]
# loop over the contours
screenCnt = None
for c in cnts:
# approximate the contour
peri = cv2.arcLength(c, True) #finds the Contour Perimeter
approx = cv2.approxPolyDP(c, polydb * peri, True)
# if our approximated contour has four points, then we can assume that we have found our screen
if len(approx) == 4:
screenCnt = approx
break
if screenCnt is None: raise EdgeNotFound()
# sometimes the algorythm finds a strange non-convex shape. The shape conforms to the card but its not complete, so then just complete the shape into a convex form
if not cv2.isContourConvex(screenCnt):
screenCnt = cv2.convexHull(screenCnt)
x,y,w,h = cv2.boundingRect(screenCnt)
screenCnt = np.array([[[x, y]], [[x+w, y]], [[x+w, y+h]], [[x, y+h]]])
if show: #this is for debugging puposes
new_image = image.copy()
cv2.drawContours(new_image, [screenCnt], -1, (255, 255, 0), 2)
cv2.imshow("Contour1 image", new_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
return screenCnt
def get_contours(image, polydb=0.03, contour_range=5, show=False):
# find the contours in the edged image, keeping only the largest ones, and initialize the screen contour
if cv2version == 3: im2, contours, hierarchy = cv2.findContours(image.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(contours, key = cv2.contourArea, reverse = True)[:contour_range]
# loop over the contours
screenCnt = None
for c in cnts:
# approximate the contour
peri = cv2.arcLength(c, True) #finds the Contour Perimeter
approx = cv2.approxPolyDP(c, polydb * peri, True)
# if our approximated contour has four points, then we can assume that we have found our screen
if len(approx) == 4:
screenCnt = approx
break
if screenCnt is None: raise EdgeNotFound()
# sometimes the algorythm finds a strange non-convex shape. The shape conforms to the card but its not complete, so then just complete the shape into a convex form
if not cv2.isContourConvex(screenCnt):
screenCnt = cv2.convexHull(screenCnt)
x,y,w,h = cv2.boundingRect(screenCnt)
screenCnt = np.array([[[x, y]], [[x+w, y]], [[x+w, y+h]], [[x, y+h]]])
if show: #this is for debugging puposes
new_image = image.copy()
cv2.drawContours(new_image, [screenCnt], -1, (255, 255, 0), 2)
cv2.imshow("Contour1 image", new_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
return screenCnt
def get_contours(image, polydb=0.1, contour_range=7, show=False):
# find the contours in the edged image, keeping only the largest ones, and initialize the screen contour
contours = _findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(contours, key = cv2.contourArea, reverse = True)[:contour_range]
# loop over the contours
screenCnt = None
for c in cnts:
# approximate the contour
peri = cv2.arcLength(c, True) #finds the Contour Perimeter
approx = cv2.approxPolyDP(c, polydb * peri, True)
# if our approximated contour has four points, then we can assume that we have found our screen
if len(approx) == 4:
screenCnt = approx
break
if screenCnt is None:
raise EdgeNotFound()
# sometimes the algorythm finds a strange non-convex shape. The shape conforms to the card but its not complete, so then just complete the shape into a convex form
if not cv2.isContourConvex(screenCnt):
screenCnt = cv2.convexHull(screenCnt)
x,y,w,h = cv2.boundingRect(screenCnt)
screenCnt = numpy.array([[[x, y]], [[x+w, y]], [[x+w, y+h]], [[x, y+h]]])
if show: #this is for debugging puposes
new_image = image.copy()
cv2.drawContours(new_image, [screenCnt], -1, (255, 255, 0), 2)
cv2.imshow("Contour1 image", new_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
return screenCnt
def get_contours(image, polydb=0.03, contour_range=7, show=False):
# find the contours in the edged image, keeping only the largest ones, and initialize the screen contour
# if cv2version == 3: im2, contours, hierarchy = cv2.findContours(image.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
contours = _findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(contours, key = cv2.contourArea, reverse = True)[:contour_range]
# loop over the contours
screenCnt = None
for c in cnts:
# approximate the contour
peri = cv2.arcLength(c, True) #finds the Contour Perimeter
approx = cv2.approxPolyDP(c, polydb * peri, True)
# if our approximated contour has four points, then we can assume that we have found our screen
if len(approx) == 4:
screenCnt = approx
break
if screenCnt is None: raise EdgeNotFound()
# sometimes the algorythm finds a strange non-convex shape. The shape conforms to the card but its not complete, so then just complete the shape into a convex form
if not cv2.isContourConvex(screenCnt):
screenCnt = cv2.convexHull(screenCnt)
x,y,w,h = cv2.boundingRect(screenCnt)
screenCnt = numpy.array([[[x, y]], [[x+w, y]], [[x+w, y+h]], [[x, y+h]]])
if show: #this is for debugging puposes
new_image = image.copy()
cv2.drawContours(new_image, [screenCnt], -1, (255, 255, 0), 2)
cv2.imshow("Contour1 image", new_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
return screenCnt
def main():
img = cv2.imread('../images/road.png')
# convert to gray and to binary using a threshold, to detect edges/shapes
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, 4)
# find shapes/contours
contours, h = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
perimeter = cv2.arcLength(contour, True)
# skip shape/contour if it is too small or too big
if perimeter < 50 or perimeter > 400 or cv2.isContourConvex(contour):
continue
approx = cv2.approxPolyDP(contour, 0.02 * cv2.arcLength(contour, True), True)
x, y, w, h = cv2.boundingRect(contour)
# colour different shapes
if len(approx) == 3:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
elif len(approx) == 4:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)
elif len(approx) >= 100:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 255), 2)
else:
# not an interesting shape for us
continue
# crop out the image, which might be a traffic sign,
# save it to test.png
cropped = img[y:y + h, x:x + w]
cv2.imwrite('test.png', cropped)
# query DIGITS REST API for classification
response = requests.post(
'http://localhost:5000/models/images/classification/classify_one.json?job_id=20151207-223900-80d9',
files={'image_file': ('file.png', open('test.png', 'rb'))})
predictions = response.json()['predictions']
# only label shape if over 90%
if predictions[0][1] > 90:
print predictions[0][0]
cv2.putText(img, predictions[0][0], (x + w + 5, y + h + 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, 255)
cv2.imshow('Demo', img)
cv2.waitKey(0)
cv2.destroyAllWindows()