def set_alpha(self, a):
"""
Set the alpha value for the calibrated camera solution. The alpha
value is a zoom, and ranges from 0 (zoomed in, all pixels in
calibrated image are valid) to 1 (zoomed out, all pixels in
original image are in calibrated image).
"""
# NOTE: Prior to Electric, this code was broken such that we never actually saved the new
# camera matrix. In effect, this enforced P = [K|0] for monocular cameras.
# TODO: Verify that OpenCV #1199 gets applied (improved GetOptimalNewCameraMatrix)
ncm, _ = cv2.getOptimalNewCameraMatrix(self.intrinsics, self.distortion, self.size, a)
for j in range(3):
for i in range(3):
self.P[j,i] = ncm[j, i]
self.mapx, self.mapy = cv2.initUndistortRectifyMap(self.intrinsics, self.distortion, self.R, ncm, self.size, cv2.CV_32FC1)
python类initUndistortRectifyMap()的实例源码
def set_alpha(self, a):
"""
Set the alpha value for the calibrated camera solution. The
alpha value is a zoom, and ranges from 0 (zoomed in, all pixels
in calibrated image are valid) to 1 (zoomed out, all pixels in
original image are in calibrated image).
"""
cv2.stereoRectify(self.l.intrinsics,
self.l.distortion,
self.r.intrinsics,
self.r.distortion,
self.size,
self.R,
self.T,
self.l.R, self.r.R, self.l.P, self.r.P,
alpha = a)
cv2.initUndistortRectifyMap(self.l.intrinsics, self.l.distortion, self.l.R, self.l.P, self.size, cv2.CV_32FC1,
self.l.mapx, self.l.mapy)
cv2.initUndistortRectifyMap(self.r.intrinsics, self.r.distortion, self.r.R, self.r.P, self.size, cv2.CV_32FC1,
self.r.mapx, self.r.mapy)
def compute_stereo_rectification_maps(stereo_rig, im_size, size_factor):
new_size = (int(im_size[1] * size_factor), int(im_size[0] * size_factor))
rotation1, rotation2, pose1, pose2 = \
cv2.stereoRectify(cameraMatrix1=stereo_rig.cameras[0].intrinsics.intrinsic_mat,
distCoeffs1=stereo_rig.cameras[0].intrinsics.distortion_coeffs,
cameraMatrix2=stereo_rig.cameras[1].intrinsics.intrinsic_mat,
distCoeffs2=stereo_rig.cameras[1].intrinsics.distortion_coeffs,
imageSize=(im_size[1], im_size[0]),
R=stereo_rig.cameras[1].extrinsics.rotation,
T=stereo_rig.cameras[1].extrinsics.translation,
flags=cv2.CALIB_ZERO_DISPARITY,
newImageSize=new_size
)[0:4]
map1x, map1y = cv2.initUndistortRectifyMap(stereo_rig.cameras[0].intrinsics.intrinsic_mat,
stereo_rig.cameras[0].intrinsics.distortion_coeffs,
rotation1, pose1, new_size, cv2.CV_32FC1)
map2x, map2y = cv2.initUndistortRectifyMap(stereo_rig.cameras[1].intrinsics.intrinsic_mat,
stereo_rig.cameras[1].intrinsics.distortion_coeffs,
rotation2, pose2, new_size, cv2.CV_32FC1)
return map1x, map1y, map2x, map2y
def getUndistortRectifyMap(self, imgWidth, imgHeight):
if self.mapx is not None and self.mapx.shape == (imgHeight, imgWidth):
return self.mapx, self.mapy
cam = self.coeffs['cameraMatrix']
d = self.coeffs['distortionCoeffs']
(newCameraMatrix, self.roi) = cv2.getOptimalNewCameraMatrix(cam,
d, (imgWidth,
imgHeight), 1,
(imgWidth, imgHeight))
self.mapx, self.mapy = cv2.initUndistortRectifyMap(cam,
d, None, newCameraMatrix,
(imgWidth, imgHeight), cv2.CV_32FC1)
return self.mapx, self.mapy
def randomDistort1(img, distort_limit=0.35, shift_limit=0.25, u=0.5):
if random.random() < u:
height, width, channel = img.shape
# debug
# img = img.copy()
# for x in range(0,width,10):
# cv2.line(img,(x,0),(x,height),(1,1,1),1)
# for y in range(0,height,10):
# cv2.line(img,(0,y),(width,y),(1,1,1),1)
k = random.uniform(-distort_limit, distort_limit) * 0.00001
dx = random.uniform(-shift_limit, shift_limit) * width
dy = random.uniform(-shift_limit, shift_limit) * height
# map_x, map_y = cv2.initUndistortRectifyMap(intrinsics, dist_coeffs, None, None, (width,height),cv2.CV_32FC1)
# https://stackoverflow.com/questions/6199636/formulas-for-barrel-pincushion-distortion
# https://stackoverflow.com/questions/10364201/image-transformation-in-opencv
x, y = np.mgrid[0:width:1, 0:height:1]
x = x.astype(np.float32) - width / 2 - dx
y = y.astype(np.float32) - height / 2 - dy
theta = np.arctan2(y, x)
d = (x * x + y * y) ** 0.5
r = d * (1 + k * d * d)
map_x = r * np.cos(theta) + width / 2 + dx
map_y = r * np.sin(theta) + height / 2 + dy
img = cv2.remap(img, map_x, map_y, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
return img
# http://pythology.blogspot.sg/2014/03/interpolation-on-regular-distorted-grid.html
## grid distortion
def __init__(self, left, right):
self.cams = [left, right]
self.undistortion_map = {}
self.rectification_map = {}
for cidx, cam in enumerate(self.cams):
(self.undistortion_map[cidx], self.rectification_map[cidx]) = cv2.initUndistortRectifyMap(
cam.K, cam.D, cam.R, cam.P, cam.shape[:2], cv2.CV_32FC1)
def rectify(mtx1, dist1, mtx2, dist2, R, T):
# R????????????P?3*4????????Q?4*4??????
R1, R2, P1, P2, Q, roi1, roi2 = cv2.stereoRectify(
mtx1, dist1,
mtx2, dist2,
(BINIMG_W, BINIMG_H),
R,
T,
flags=cv2.CALIB_ZERO_DISPARITY,
alpha=-1,
newImageSize=(BINIMG_W, BINIMG_H)
)
if __name__ == '__main__':
printMat(R1, R2, P1, P2, Q, roi1, roi2)
# ??????????????mapx, mapy?
mapx1, mapy1 = cv2.initUndistortRectifyMap(
mtx1, dist1,
R1, P1,
(BINIMG_W, BINIMG_H),
cv2.CV_16SC2
)
mapx2, mapy2 = cv2.initUndistortRectifyMap(
mtx2, dist2,
R2, P2,
(BINIMG_W, BINIMG_H),
cv2.CV_16SC2
)
return mapx1, mapy1, mapx2, mapy2, Q, roi1, roi2
def init_undistort():
#cv2.initUndistortRectifyMap(cameraMatrix, distCoeffs, R, newCameraMatrix, size, m1type[, map1[, map2]]) -> map1, map2
frame_size=(640,480)
map1, map2=cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, frame_size, cv2.CV_32FC1)
return map1, map2
# this is a faster undistort_crop that only does remapping. Requires call to init_undistort first to
# to create the map1 and map2
def __init__(self, x, y, K, d, camid=0, visualize=False, debug=False):
# Initialize multiprocessing.Process parent
multiprocessing.Process.__init__(self)
# Exit event for stopping process
self._exit = multiprocessing.Event()
# Event that is set, everytime an image has been unwarped
self.newframe_event = multiprocessing.Event()
# Event that pauses the main loop if set
self._pause_event = multiprocessing.Event()
# Defines whether to visualize the camera output
self._visualize = visualize
# Switches debugging mode
self._debug = debug
# Some variable for storing the time of the last frame
self._oldtime = time.time()
# Set camera parameters
self._cam_device_id = camid # Get camera ID
self._x = x # Get width
self._y = y # Get height
# An empty array in shared memory to store the current image frame
self._currentframe = sharedmem.empty((y, x), dtype='uint8')
# Define camera matrix K
self._K = K
# Define distortion coefficients d
self._d = d
# Setup camera object using OpenCV
self._cam = cv2.VideoCapture(self._cam_device_id)
self._cam.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, self._x)
self._cam.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, self._y)
# Generate optimal camera matrix
self._newcameramatrix, self._roi = cv2.getOptimalNewCameraMatrix(self._K, self._d, (self._x, self._y), 0)
# Generate LUTs for undistortion
self._mapx, self._mapy = cv2.initUndistortRectifyMap(self._K, self._d, None, self._newcameramatrix,
(self._x, self._y), 5)