def augment_image(rgbImg):
augmented_images = []
# original image
augmented_images.append(rgbImg)
# fliped x-axis
rimg = rgbImg.copy()
cv2.flip(rimg, 1, rimg)
augmented_images.append(rimg)
# add gaussian noise
for _ in range(10):
gaussian_noise = rgbImg.copy()
cv2.randn(gaussian_noise, 0, 150)
augmented_images.append(rgbImg + gaussian_noise)
augmented_images.append(rimg + gaussian_noise)
for _ in range(10):
uniform_noise = rgbImg.copy()
cv2.randu(uniform_noise, 0, 1)
augmented_images.append(rgbImg + uniform_noise)
augmented_images.append(rimg + uniform_noise)
return augmented_images
python类randn()的实例源码
def read(self, dst=None):
w, h = self.frame_size
if self.bg is None:
buf = np.zeros((h, w, 3), np.uint8)
else:
buf = self.bg.copy()
self.render(buf)
if self.noise > 0.0:
noise = np.zeros((h, w, 3), np.int8)
cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise)
buf = cv2.add(buf, noise, dtype=cv2.CV_8UC3)
return True, buf
def read(self, dst=None):
w, h = self.frame_size
if self.bg is None:
buf = np.zeros((h, w, 3), np.uint8)
else:
buf = self.bg.copy()
self.render(buf)
if self.noise > 0.0:
noise = np.zeros((h, w, 3), np.int8)
cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise)
buf = cv2.add(buf, noise, dtype=cv2.CV_8UC3)
return True, buf
def read(self, dst=None):
w, h = self.frame_size
if self.bg is None:
buf = np.zeros((h, w, 3), np.uint8)
else:
buf = self.bg.copy()
self.render(buf)
if self.noise > 0.0:
noise = np.zeros((h, w, 3), np.int8)
cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise)
buf = cv2.add(buf, noise, dtype=cv2.CV_8UC3)
return True, buf
def applyNoise(self, gaussian):
# clone HSV channels first
from copy import deepcopy
self.n_h = deepcopy(self.h)
self.n_s = deepcopy(self.s)
self.n_v = deepcopy(self.v)
mean, var = gaussian.get('mean'), gaussian.get('var')
cv2.randn(self.n_h, mean, var)
cv2.randn(self.n_s, mean, var)
cv2.randn(self.n_v, mean, var)
def read(self, dst=None):
w, h = self.frame_size
if self.bg is None:
buf = np.zeros((h, w, 3), np.uint8)
else:
buf = self.bg.copy()
self.render(buf)
if self.noise > 0.0:
noise = np.zeros((h, w, 3), np.int8)
cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise)
buf = cv2.add(buf, noise, dtype=cv2.CV_8UC3)
return True, buf
def read(self, dst=None):
noise = np.zeros(self.render.sceneBg.shape, np.int8)
cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise)
return True, cv2.add(self.render.getNextFrame(), noise, dtype=cv2.CV_8UC3)
def read(self, dst=None):
noise = np.zeros(self.render.sceneBg.shape, np.int8)
cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise)
return True, cv2.add(self.render.getNextFrame(), noise, dtype=cv2.CV_8UC3)
def read(self, dst=None):
w, h = self.frame_size
if self.bg is None:
buf = np.zeros((h, w, 3), np.uint8)
else:
buf = self.bg.copy()
self.render(buf)
if self.noise > 0.0:
noise = np.zeros((h, w, 3), np.int8)
cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise)
buf = cv2.add(buf, noise, dtype=cv2.CV_8UC3)
return True, buf
video.py 文件源码
项目:Image-Processing-and-Feature-Detection
作者: amita-kapoor
项目源码
文件源码
阅读 20
收藏 0
点赞 0
评论 0
def read(self, dst=None):
w, h = self.frame_size
if self.bg is None:
buf = np.zeros((h, w, 3), np.uint8)
else:
buf = self.bg.copy()
self.render(buf)
if self.noise > 0.0:
noise = np.zeros((h, w, 3), np.int8)
cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise)
buf = cv2.add(buf, noise, dtype=cv2.CV_8UC3)
return True, buf
video.py 文件源码
项目:Image-Processing-and-Feature-Detection
作者: amita-kapoor
项目源码
文件源码
阅读 30
收藏 0
点赞 0
评论 0
def read(self, dst=None):
noise = np.zeros(self.render.sceneBg.shape, np.int8)
cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise)
return True, cv2.add(self.render.getNextFrame(), noise, dtype=cv2.CV_8UC3)
video.py 文件源码
项目:Image-Processing-and-Feature-Detection
作者: amita-kapoor
项目源码
文件源码
阅读 20
收藏 0
点赞 0
评论 0
def read(self, dst=None):
noise = np.zeros(self.render.sceneBg.shape, np.int8)
cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise)
return True, cv2.add(self.render.getNextFrame(), noise, dtype=cv2.CV_8UC3)