def find_points(images):
pattern_size = (9, 6)
obj_points = []
img_points = []
# Assumed object points relation
a_object_point = np.zeros((PATTERN_SIZE[1] * PATTERN_SIZE[0], 3),
np.float32)
a_object_point[:, :2] = np.mgrid[0:PATTERN_SIZE[0],
0:PATTERN_SIZE[1]].T.reshape(-1, 2)
# Termination criteria for sub pixel corners refinement
stop_criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER,
30, 0.001)
print('Finding points ', end='')
debug_images = []
for (image, color_image) in images:
found, corners = cv.findChessboardCorners(image, PATTERN_SIZE, None)
if found:
obj_points.append(a_object_point)
cv.cornerSubPix(image, corners, (11, 11), (-1, -1), stop_criteria)
img_points.append(corners)
print('.', end='')
else:
print('-', end='')
if DEBUG:
cv.drawChessboardCorners(color_image, PATTERN_SIZE, corners, found)
debug_images.append(color_image)
sys.stdout.flush()
if DEBUG:
display_images(debug_images, DISPLAY_SCALE)
print('\nWas able to find points in %s images' % len(img_points))
return obj_points, img_points
# images is a lis of tuples: (gray_image, color_image)
python类cornerSubPix()的实例源码
get_extrinsics.py 文件源码
项目:Kinect-ASUS-Xtion-Pro-Live-Calibration-Tutorials
作者: taochenshh
项目源码
文件源码
阅读 29
收藏 0
点赞 0
评论 0
def rgb_callback(self,data):
try:
self.rgb_img = self.br.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
gray = cv2.cvtColor(self.rgb_img,cv2.COLOR_BGR2GRAY)
rgb_ret, rgb_corners = cv2.findChessboardCorners(gray, (x_num,y_num),None)
cv2.namedWindow('rgb_img', cv2.WINDOW_NORMAL)
cv2.imshow('rgb_img',self.rgb_img)
cv2.waitKey(5)
if rgb_ret == True:
rgb_tempimg = self.rgb_img.copy()
cv2.cornerSubPix(gray,rgb_corners,(5,5),(-1,-1),criteria)
cv2.drawChessboardCorners(rgb_tempimg, (x_num,y_num), rgb_corners,rgb_ret)
rgb_rvec, self.rgb_tvec, rgb_inliers = cv2.solvePnPRansac(objpoints, rgb_corners, rgb_mtx, rgb_dist)
self.rgb_rmat, _ = cv2.Rodrigues(rgb_rvec)
print("The world coordinate system's origin in camera's coordinate system:")
print("===rgb_camera rvec:")
print(rgb_rvec)
print("===rgb_camera rmat:")
print(self.rgb_rmat)
print("===rgb_camera tvec:")
print(self.rgb_tvec)
print("rgb_camera_shape: ")
print(self.rgb_img.shape)
print("The camera origin in world coordinate system:")
print("===camera rmat:")
print(self.rgb_rmat.T)
print("===camera tvec:")
print(-np.dot(self.rgb_rmat.T, self.rgb_tvec))
rgb_stream = open("/home/chentao/kinect_calibration/rgb_camera_pose.yaml", "w")
data = {'rmat':self.rgb_rmat.tolist(), 'tvec':self.rgb_tvec.tolist()}
yaml.dump(data, rgb_stream)
cv2.imshow('rgb_img',rgb_tempimg)
cv2.waitKey(5)
registration_stereo.py 文件源码
项目:Kinect-ASUS-Xtion-Pro-Live-Calibration-Tutorials
作者: taochenshh
项目源码
文件源码
阅读 26
收藏 0
点赞 0
评论 0
def ir_calib_callback(self,data):
try:
self.ir_img = self.mkgray(data)
except CvBridgeError as e:
print(e)
ir_ret, ir_corners = cv2.findChessboardCorners(self.ir_img, (y_num,x_num))
cv2.imshow('ir_img',self.ir_img)
cv2.waitKey(5)
if ir_ret == True:
ir_tempimg = self.ir_img.copy()
cv2.cornerSubPix(ir_tempimg,ir_corners,(11,11),(-1,-1),criteria)
cv2.drawChessboardCorners(ir_tempimg, (y_num,x_num), ir_corners,ir_ret)
# ret, rvec, tvec = cv2.solvePnP(objpoints, corners, mtx, dist, flags = cv2.CV_EPNP)
depth_stream = open("/home/chentao/kinect_calibration/ir_camera_corners.yaml", "w")
data = {'corners':ir_corners.tolist()}
yaml.dump(data, depth_stream)
cv2.imshow('ir_img',ir_tempimg)
cv2.waitKey(5)
get_extrinsics.py 文件源码
项目:Kinect-ASUS-Xtion-Pro-Live-Calibration-Tutorials
作者: taochenshh
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def ir_callback(self,data):
try:
self.ir_img = self.mkgray(data)
except CvBridgeError as e:
print(e)
ir_ret, ir_corners = cv2.findChessboardCorners(self.ir_img, (x_num,y_num))
cv2.namedWindow('ir_img', cv2.WINDOW_NORMAL)
cv2.imshow('ir_img',self.ir_img)
cv2.waitKey(5)
if ir_ret == True:
ir_tempimg = self.ir_img.copy()
cv2.cornerSubPix(ir_tempimg,ir_corners,(11,11),(-1,-1),criteria)
cv2.drawChessboardCorners(ir_tempimg, (x_num,y_num), ir_corners,ir_ret)
# ret, rvec, tvec = cv2.solvePnP(objpoints, corners, mtx, dist, flags = cv2.CV_EPNP)
ir_rvec, self.ir_tvec, ir_inliers = cv2.solvePnPRansac(objpoints, ir_corners, depth_mtx, depth_dist)
self.ir_rmat, _ = cv2.Rodrigues(ir_rvec)
print("The world coordinate system's origin in camera's coordinate system:")
print("===ir_camera rvec:")
print(ir_rvec)
print("===ir_camera rmat:")
print(self.ir_rmat)
print("===ir_camera tvec:")
print(self.ir_tvec)
print("ir_camera_shape: ")
print(self.ir_img.shape)
print("The camera origin in world coordinate system:")
print("===camera rmat:")
print(self.ir_rmat.T)
print("===camera tvec:")
print(-np.dot(self.ir_rmat.T, self.ir_tvec))
depth_stream = open("/home/chentao/kinect_calibration/ir_camera_pose.yaml", "w")
data = {'rmat':self.ir_rmat.tolist(), 'tvec':self.ir_tvec.tolist()}
yaml.dump(data, depth_stream)
cv2.imshow('ir_img',ir_tempimg)
cv2.waitKey(5)
def _get_corners(img, board, refine = True, checkerboard_flags=0):
"""
Get corners for a particular chessboard for an image
"""
h = img.shape[0]
w = img.shape[1]
if len(img.shape) == 3 and img.shape[2] == 3:
mono = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
else:
mono = img
(ok, corners) = cv2.findChessboardCorners(mono, (board.n_cols, board.n_rows), flags = cv2.CALIB_CB_ADAPTIVE_THRESH |
cv2.CALIB_CB_NORMALIZE_IMAGE | checkerboard_flags)
if not ok:
return (ok, corners)
# If any corners are within BORDER pixels of the screen edge, reject the detection by setting ok to false
# NOTE: This may cause problems with very low-resolution cameras, where 8 pixels is a non-negligible fraction
# of the image size. See http://answers.ros.org/question/3155/how-can-i-calibrate-low-resolution-cameras
BORDER = 8
if not all([(BORDER < corners[i, 0, 0] < (w - BORDER)) and (BORDER < corners[i, 0, 1] < (h - BORDER)) for i in range(corners.shape[0])]):
ok = False
if refine and ok:
# Use a radius of half the minimum distance between corners. This should be large enough to snap to the
# correct corner, but not so large as to include a wrong corner in the search window.
min_distance = float("inf")
for row in range(board.n_rows):
for col in range(board.n_cols - 1):
index = row*board.n_rows + col
min_distance = min(min_distance, _pdist(corners[index, 0], corners[index + 1, 0]))
for row in range(board.n_rows - 1):
for col in range(board.n_cols):
index = row*board.n_rows + col
min_distance = min(min_distance, _pdist(corners[index, 0], corners[index + board.n_cols, 0]))
radius = int(math.ceil(min_distance * 0.5))
cv2.cornerSubPix(mono, corners, (radius,radius), (-1,-1),
( cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1 ))
return (ok, corners)
def _findChessboard(self):
# Find the chess board corners
flags = cv2.CALIB_CB_FAST_CHECK
if self._detect_sensible:
flags = (cv2.CALIB_CB_FAST_CHECK |
cv2.CALIB_CB_ADAPTIVE_THRESH |
cv2.CALIB_CB_FILTER_QUADS |
cv2.CALIB_CB_NORMALIZE_IMAGE)
(didFindCorners, corners) = cv2.findChessboardCorners(
self.img, self.opts['size'], flags=flags
)
if didFindCorners:
# further refine corners, corners is updatd in place
cv2.cornerSubPix(self.img, corners, (11, 11), (-1, -1),
# termination criteria for corner estimation for
# chessboard method
(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,
30, 0.001)
) # returns None
return didFindCorners, corners
registration_stereo.py 文件源码
项目:Kinect-ASUS-Xtion-Pro-Live-Calibration-Tutorials
作者: taochenshh
项目源码
文件源码
阅读 32
收藏 0
点赞 0
评论 0
def rgb_calib_callback(self,data):
try:
self.rgb_img = self.br.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
gray = cv2.cvtColor(self.rgb_img,cv2.COLOR_BGR2GRAY)
rgb_ret, rgb_corners = cv2.findChessboardCorners(gray, (y_num,x_num),None)
cv2.imshow('rgb_img',self.rgb_img)
cv2.waitKey(5)
if rgb_ret == True:
rgb_tempimg = self.rgb_img.copy()
cv2.cornerSubPix(gray,rgb_corners,(11,11),(-1,-1),criteria)
cv2.drawChessboardCorners(rgb_tempimg, (y_num,x_num), rgb_corners,rgb_ret)
rgb_stream = open("/home/chentao/kinect_calibration/rgb_camera_corners.yaml", "w")
data = {'corners':rgb_corners.tolist()}
yaml.dump(data, rgb_stream)
cv2.imshow('rgb_img',rgb_tempimg)
cv2.waitKey(5)
pose_estimation.py 文件源码
项目:Kinect-ASUS-Xtion-Pro-Live-Calibration-Tutorials
作者: taochenshh
项目源码
文件源码
阅读 23
收藏 0
点赞 0
评论 0
def rgb_callback(self,data):
try:
img = self.br.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# ret, corners = cv2.findChessboardCorners(gray, (x_num,y_num),None)
ret, corners = cv2.findChessboardCorners(img, (x_num,y_num))
cv2.imshow('img',img)
cv2.waitKey(5)
if ret == True:
cv2.cornerSubPix(gray,corners,(5,5),(-1,-1),criteria)
tempimg = img.copy()
cv2.drawChessboardCorners(tempimg, (x_num,y_num), corners,ret)
# ret, rvec, tvec = cv2.solvePnP(objpoints, corners, mtx, dist, flags = cv2.CV_EPNP)
rvec, tvec, inliers = cv2.solvePnPRansac(objpoints, corners, rgb_mtx, rgb_dist)
print("rvecs:")
print(rvec)
print("tvecs:")
print(tvec)
# project 3D points to image plane
imgpts, jac = cv2.projectPoints(axis, rvec, tvec, rgb_mtx, rgb_dist)
imgpts = np.int32(imgpts).reshape(-1,2)
cv2.line(tempimg, tuple(imgpts[0]), tuple(imgpts[1]),[255,0,0],4) #BGR
cv2.line(tempimg, tuple(imgpts[0]), tuple(imgpts[2]),[0,255,0],4)
cv2.line(tempimg, tuple(imgpts[0]), tuple(imgpts[3]),[0,0,255],4)
cv2.imshow('img',tempimg)
cv2.waitKey(5)
def load_frame_images(self):
"""
Load images (or image pairs) from self.full_frame_folder_path
"""
print("Loading frames from '{0:s}'".format(self.full_frame_folder_path))
all_files = [f for f in os.listdir(self.full_frame_folder_path)
if osp.isfile(osp.join(self.full_frame_folder_path, f)) and f.endswith(".png")]
all_files.sort()
usable_frame_ct = sys.maxsize
frame_number_sets = []
for video in self.videos:
# assume matching numbers in corresponding left & right files
files = [f for f in all_files if f.startswith(video.name)]
files.sort() # added to be explicit
cam_frame_ct = 0
frame_numbers = []
for ix_pair in range(len(files)):
frame = cv2.imread(osp.join(self.full_frame_folder_path, files[ix_pair]))
frame_number = int(re.search(r'\d\d\d\d', files[ix_pair]).group(0))
frame_numbers.append(frame_number)
found, corners = cv2.findChessboardCorners(frame, self.board_dims)
if not found:
raise ValueError("Could not find corners in image '{0:s}'".format(files[ix_pair]))
grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.cornerSubPix(grey, corners, (11, 11), (-1, -1), self.criteria_subpix)
video.image_points.append(corners)
video.usable_frames[frame_number] = ix_pair
cam_frame_ct += 1
usable_frame_ct = min(usable_frame_ct, cam_frame_ct)
frame_number_sets.append(frame_numbers)
if len(self.videos) > 1:
# check that all cameras have the same frame number sets
if len(frame_number_sets[0]) != len(frame_number_sets[1]):
raise ValueError(
"There are some non-paired frames in folder '{0:s}'".format(self.full_frame_folder_path))
for i_fn in range(len(frame_number_sets[0])):
fn0 = frame_number_sets[0][i_fn]
fn1 = frame_number_sets[1][i_fn]
if fn0 != fn1:
raise ValueError("There are some non-paired frames in folder '{0:s}'." +
" Check frame {1:d} for camera {2:s} and frame {3:d} for camera {4:s}."
.format(self.full_frame_folder_path,
fn0, self.videos[0].name,
fn1, self.videos[1].name))
for i_frame in range(usable_frame_ct):
self.object_points.append(self.board_object_corner_set)
return usable_frame_ct
def add_corners(self, i_frame, subpixel_criteria, frame_folder_path=None,
save_image=False, save_chekerboard_overlay=False):
grey_frame = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY)
cv2.cornerSubPix(grey_frame, self.current_image_points, (11, 11), (-1, -1), subpixel_criteria)
if save_image:
png_path = (os.path.join(frame_folder_path,
"{0:s}{1:04d}{2:s}".format(self.name, i_frame, ".png")))
cv2.imwrite(png_path, self.frame)
if save_chekerboard_overlay:
png_path = (os.path.join(frame_folder_path,
"checkerboard_{0:s}{1:04d}{2:s}".format(self.name, i_frame, ".png")))
overlay = self.frame.copy()
cv2.drawChessboardCorners(overlay, self.current_board_dims, self.current_image_points, True)
cv2.imwrite(png_path, overlay)
self.usable_frames[i_frame] = len(self.image_points)
self.image_points.append(self.current_image_points)
def draw_chessboard_corners(image):
# Find the chess board corners
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray_image, (9, 6), None)
# Draw image
if ret is True:
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,
30,
0.001)
corners2 = cv2.cornerSubPix(gray_image,
corners,
(11, 11),
(-1, -1),
criteria)
img = cv2.drawChessboardCorners(image,
(9, 6),
corners2,
ret)
return img
def calculateCorners(self, gray, points=None):
'''
gray is OpenCV gray image,
points is Marker.points
>>> marker.calculateCorners(gray)
>>> print(marker.corners)
'''
if points is None: points = self.points
if points is None: raise TypeError('calculateCorners need a points value')
'''
rotations = 0 -> 0,1,2,3
rotations = 1 -> 3,0,1,2
rotations = 2 -> 2,3,0,1
rotations = 3 -> 1,2,3,0
=> A: 1,0,3,2; B: 0,3,2,1; C: 2,1,0,3; D: 3,2,1,0
'''
i = self.rotations
A = (1,0,3,2)[i]; B = (0,3,2,1)[i]; C = (2,1,0,3)[i]; D = (3,2,1,0)[i]
corners = np.float32([points[A], points[B], points[C], points[D]])
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1)
self.corners = cv2.cornerSubPix(gray, corners, (5,5), (-1,-1), criteria)
def calculateCorners(self, gray, points=None):
'''
gray is OpenCV gray image,
points is Marker.points
>>> marker.calculateCorners(gray)
>>> print(marker.corners)
'''
if points is None: points = self.points
if points is None: raise TypeError('calculateCorners need a points value')
'''
rotations = 0 -> 0,1,2,3
rotations = 1 -> 3,0,1,2
rotations = 2 -> 2,3,0,1
rotations = 3 -> 1,2,3,0
=> A: 1,0,3,2; B: 0,3,2,1; C: 2,1,0,3; D: 3,2,1,0
'''
i = self.rotations
A = (1,0,3,2)[i]; B = (0,3,2,1)[i]; C = (2,1,0,3)[i]; D = (3,2,1,0)[i]
corners = np.float32([points[A], points[B], points[C], points[D]])
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1)
self.corners = cv2.cornerSubPix(gray, corners, (5,5), (-1,-1), criteria)
def calculateCorners(self, gray, points=None):
'''
gray is OpenCV gray image,
points is Marker.points
>>> marker.calculateCorners(gray)
>>> print(marker.corners)
'''
if points is None: points = self.points
if points is None: raise TypeError('calculateCorners need a points value')
'''
rotations = 0 -> 0,1,2,3
rotations = 1 -> 3,0,1,2
rotations = 2 -> 2,3,0,1
rotations = 3 -> 1,2,3,0
=> A: 1,0,3,2; B: 0,3,2,1; C: 2,1,0,3; D: 3,2,1,0
'''
i = self.rotations
A = (1,0,3,2)[i]; B = (0,3,2,1)[i]; C = (2,1,0,3)[i]; D = (3,2,1,0)[i]
corners = np.float32([points[A], points[B], points[C], points[D]])
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1)
self.corners = cv2.cornerSubPix(gray, corners, (5,5), (-1,-1), criteria)
def calculateCorners(self, gray, points=None):
'''
gray is OpenCV gray image,
points is Marker.points
>>> marker.calculateCorners(gray)
>>> print(marker.corners)
'''
if points is None: points = self.points
if points is None: raise TypeError('calculateCorners need a points value')
'''
rotations = 0 -> 0,1,2,3
rotations = 1 -> 3,0,1,2
rotations = 2 -> 2,3,0,1
rotations = 3 -> 1,2,3,0
=> A: 1,0,3,2; B: 0,3,2,1; C: 2,1,0,3; D: 3,2,1,0
'''
i = self.rotations
A = (1,0,3,2)[i]; B = (0,3,2,1)[i]; C = (2,1,0,3)[i]; D = (3,2,1,0)[i]
corners = np.float32([points[A], points[B], points[C], points[D]])
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1)
self.corners = cv2.cornerSubPix(gray, corners, (5,5), (-1,-1), criteria)
def get_vectors(image, points, mtx, dist):
# order points
points = _order_points(points)
# set up criteria, image, points and axis
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
imgp = np.array(points, dtype='float32')
objp = np.array([[0.,0.,0.],[1.,0.,0.],
[1.,1.,0.],[0.,1.,0.]], dtype='float32')
# calculate rotation and translation vectors
cv2.cornerSubPix(gray,imgp,(11,11),(-1,-1),criteria)
rvecs, tvecs, _ = cv2.solvePnPRansac(objp, imgp, mtx, dist)
return rvecs, tvecs
def subpixel_pts(self, im, pts):
"""Perform subpixel refinement"""
term = ( cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1 )
cv2.cornerSubPix(im, pts, (10, 10), (-1, -1), term)
return
def downsample_and_detect(self, img):
"""
Downsample the input image to approximately VGA resolution and detect the
calibration target corners in the full-size image.
Combines these apparently orthogonal duties as an optimization. Checkerboard
detection is too expensive on large images, so it's better to do detection on
the smaller display image and scale the corners back up to the correct size.
Returns (scrib, corners, downsampled_corners, board, (x_scale, y_scale)).
"""
# Scale the input image down to ~VGA size
height = img.shape[0]
width = img.shape[1]
scale = math.sqrt( (width*height) / (640.*480.) )
if scale > 1.0:
scrib = cv2.resize(img, (int(width / scale), int(height / scale)))
else:
scrib = img
# Due to rounding, actual horizontal/vertical scaling may differ slightly
x_scale = float(width) / scrib.shape[1]
y_scale = float(height) / scrib.shape[0]
if self.pattern == Patterns.Chessboard:
# Detect checkerboard
(ok, downsampled_corners, board) = self.get_corners(scrib, refine = True)
# Scale corners back to full size image
corners = None
if ok:
if scale > 1.0:
# Refine up-scaled corners in the original full-res image
# TODO Does this really make a difference in practice?
corners_unrefined = downsampled_corners.copy()
corners_unrefined[:, :, 0] *= x_scale
corners_unrefined[:, :, 1] *= y_scale
radius = int(math.ceil(scale))
if len(img.shape) == 3 and img.shape[2] == 3:
mono = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
else:
mono = img
cv2.cornerSubPix(mono, corners_unrefined, (radius,radius), (-1,-1),
( cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1 ))
corners = corners_unrefined
else:
corners = downsampled_corners
else:
# Circle grid detection is fast even on large images
(ok, corners, board) = self.get_corners(img)
# Scale corners to downsampled image for display
downsampled_corners = None
if ok:
if scale > 1.0:
downsampled_corners = corners.copy()
downsampled_corners[:,:,0] /= x_scale
downsampled_corners[:,:,1] /= y_scale
else:
downsampled_corners = corners
return (scrib, corners, downsampled_corners, board, (x_scale, y_scale))
def getP(self, dst):
"""
dst: ??????
return self.MTX,self.DIST,self.RVEC,self.TVEC:
?? ?????????????????
"""
if self.SceneImage is None:
return None
corners = np.float32([dst[1], dst[0], dst[2], dst[3]])
gray = cv2.cvtColor(self.SceneImage, cv2.COLOR_BGR2GRAY)
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (1,0,0), (1,1,0)
objp = np.zeros((2*2,3), np.float32)
objp[:,:2] = np.mgrid[0:2,0:2].T.reshape(-1,2)
corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
if self.PTimes < self.PCount or self.PCount == 0:
# Arrays to store object points and image points from all the images.
objpoints = self.OBJPoints # 3d point in real world space
imgpoints = self.IMGPoints # 2d points in image plane.
if len(imgpoints) == 0 or np.sum(np.abs(imgpoints[-1] - corners2)) != 0:
objpoints.append(objp)
imgpoints.append(corners2)
# Find mtx, dist, rvecs, tvecs
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None)
if not ret:
self.PTimes += 1
return None
self.OBJPoints = objpoints
self.IMGPoints = imgpoints
self.MTX = mtx
self.DIST = dist
self.RVEC = rvecs[0]
self.TVEC = tvecs[0]
else:
# Find the rotation and translation vectors.
_, rvec, tvec, _= cv2.solvePnPRansac(objp, corners2, self.MTX, self.DIST)
self.RVEC = rvec
self.TVEC = tvec
self.PTimes += 1
return self.MTX,self.DIST,self.RVEC,self.TVEC
def getP(self, dst):
"""
dst: ??????
return self.MTX,self.DIST,self.RVEC,self.TVEC:
?? ?????????????????
"""
if self.SceneImage is None:
return None
corners = np.float32([dst[1], dst[0], dst[2], dst[3]])
gray = cv2.cvtColor(self.SceneImage, cv2.COLOR_BGR2GRAY)
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (1,0,0), (1,1,0)
objp = np.zeros((2*2,3), np.float32)
objp[:,:2] = np.mgrid[0:2,0:2].T.reshape(-1,2)
corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
if self.PTimes < self.PCount or self.PCount == 0:
# Arrays to store object points and image points from all the images.
objpoints = self.OBJPoints # 3d point in real world space
imgpoints = self.IMGPoints # 2d points in image plane.
if len(imgpoints) == 0 or np.sum(np.abs(imgpoints[-1] - corners2)) != 0:
objpoints.append(objp)
imgpoints.append(corners2)
# Find mtx, dist, rvecs, tvecs
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None)
if not ret:
self.PTimes += 1
return None
self.OBJPoints = objpoints
self.IMGPoints = imgpoints
self.MTX = mtx
self.DIST = dist
self.RVEC = rvecs[0]
self.TVEC = tvecs[0]
else:
# Find the rotation and translation vectors.
_, rvec, tvec, _= cv2.solvePnPRansac(objp, corners2, self.MTX, self.DIST)
self.RVEC = rvec
self.TVEC = tvec
self.PTimes += 1
return self.MTX,self.DIST,self.RVEC,self.TVEC
def camera_cal(self, image):
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
nx = 8
ny = 6
dst = np.copy(image)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((ny * nx, 3), np.float32)
objp[:,:2] = np.mgrid[0:nx, 0:ny].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d points in image plane.
# Search for chessboard corners
grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
#ret_thresh, mask = cv2.threshold(grey, 30, 255, cv2.THRESH_BINARY)
ret, corners = cv2.findChessboardCorners(image, (nx, ny), None) #flags=(cv2.cv.CV_CALIB_CB_ADAPTIVE_THRESH + cv2.cv.CV_CALIB_CB_FILTER_QUADS))
# If found, add object points, image points
if ret == True:
objpoints.append(objp)
cv2.cornerSubPix(grey,corners, (11,11), (-1,-1), criteria)
imgpoints.append(corners)
self.calibrated = True
print ("FOUND!")
#Draw and display the corners
cv2.drawChessboardCorners(image, (nx, ny), corners, ret)
# Do camera calibration given object points and image points
ret, self.mtx, self.dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, grey.shape[::-1], None, None)
# Save the camera calibration result for later use (we won't worry about rvecs / tvecs)
dist_pickle = {}
dist_pickle["mtx"] = self.mtx
dist_pickle["dist"] = self.dist
dist_pickle['objpoints'] = objpoints
dist_pickle['imgpoints'] = imgpoints
pickle.dump( dist_pickle, open( "/home/wil/ros/catkin_ws/src/av_sim/computer_vision/camera_calibration/data/camera_cal_pickle.p", "wb" ) )
#else:
#print("Searching...")
return image
def find_chessboard(self, sx=6, sy=9):
"""Finds the corners of an sx X sy chessboard in the image.
Parameters
----------
sx : int
Number of chessboard corners in x-direction.
sy : int
Number of chessboard corners in y-direction.
Returns
-------
:obj:`list` of :obj:`numpy.ndarray`
A list containing the 2D points of the corners of the detected
chessboard, or None if no chessboard found.
"""
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS +
cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((sx * sy, 3), np.float32)
objp[:, :2] = np.mgrid[0:sx, 0:sy].T.reshape(-1, 2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
# create images
img = self.data.astype(np.uint8)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Find the chess board corners
ret, corners = cv2.findChessboardCorners(gray, (sx, sy), None)
# If found, add object points, image points (after refining them)
if ret:
objpoints.append(objp)
cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
imgpoints.append(corners)
if corners is not None:
return corners.squeeze()
return None