python类calcHist()的实例源码

dt_grid.py 文件源码 项目:cv_ml 作者: techfort 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def extract(img):
    return np.ravel(cv2.calcHist([img],[1],None,[126],[0,256]))
dt.py 文件源码 项目:cv_ml 作者: techfort 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def extract(img):
    return np.ravel(cv2.calcHist([img],[2],None,[126],[0,256]))
gbm.py 文件源码 项目:cv_ml 作者: techfort 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def extract(img):
    return np.ravel(cv2.calcHist([img],[2],None,[127],[0,256]))
summary.py 文件源码 项目:cv_ml 作者: techfort 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def extract(img):
    return np.ravel(cv2.calcHist([img],[2],None,[126],[0,256]))
recognition.py 文件源码 项目:Vehicle-Logo-Recognition 作者: xinyuexy 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def BlockLBPH(img,minValue,maxValue,normed=True):
    '''????????LBP?????'''
    #?????bin???
    histSize=[maxValue-minValue+1]
    ranges=[minValue,maxValue+1]
    result=cv2.calcHist(img,[0],None,histSize,ranges)
    #???
    if normed:
        result=result/(int)(img.shape[0]*img.shape[1])
    return result.reshape(1,-1)
example.py 文件源码 项目:test-automation 作者: openstax 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def gray_histogram_cmp_corr(self):
        self.threshold = .9

        gray_i = cv2.cvtColor(self.image_i, cv2.COLOR_BGR2GRAY)
        hist_i = cv2.calcHist([gray_i], [0], None, [256], [0, 256])

        gray_j = cv2.cvtColor(self.image_j, cv2.COLOR_BGR2GRAY)
        hist_j = cv2.calcHist([gray_j], [0], None, [256], [0, 256])

        self.measure = cv2.compareHist(hist_i, hist_j, cv.CV_COMP_CORREL)
        self.assertGreater(self.measure, self.threshold)
example.py 文件源码 项目:test-automation 作者: openstax 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def gray_histogram_cmp_bhatta(self):
        self.threshold = .07

        gray_i = cv2.cvtColor(self.image_i, cv2.COLOR_BGR2GRAY)
        hist_i = cv2.calcHist([gray_i], [0], None, [256], [1, 256])

        gray_j = cv2.cvtColor(self.image_j, cv2.COLOR_BGR2GRAY)
        hist_j = cv2.calcHist([gray_j], [0], None, [256], [1, 256])

        self.measure = cv2.compareHist(hist_i, hist_j, cv.CV_COMP_BHATTACHARYYA)
        self.assertGreater(self.measure, self.threshold)
example.py 文件源码 项目:test-automation 作者: openstax 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def gray_histogram_cmp_corr(self):
        self.threshold = .9

        gray_i = cv2.cvtColor(self.image_i, cv2.COLOR_BGR2GRAY)
        hist_i = cv2.calcHist([gray_i], [0], None, [256], [0, 256])

        gray_j = cv2.cvtColor(self.image_j, cv2.COLOR_BGR2GRAY)
        hist_j = cv2.calcHist([gray_j], [0], None, [256], [0, 256])

        self.measure = cv2.compareHist(hist_i, hist_j, cv.CV_COMP_CORREL)
        self.assertGreater(self.measure, self.threshold)
example.py 文件源码 项目:test-automation 作者: openstax 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def gray_histogram_cmp_bhatta(self):
        threshold = .07

        gray_i = cv2.cvtColor(self.image_i, cv2.COLOR_BGR2GRAY)
        hist_i = cv2.calcHist([gray_i], [0], None, [256], [1, 256])

        gray_j = cv2.cvtColor(self.image_j, cv2.COLOR_BGR2GRAY)
        hist_j = cv2.calcHist([gray_j], [0], None, [256], [1, 256])

        measure = cv2.compareHist(hist_i, hist_j, cv.CV_COMP_BHATTACHARYYA)
        self.assertGreater(measure, threshold)
example.py 文件源码 项目:test-automation 作者: openstax 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def Harris_Corner(self):
        self.threshold = 0.999999999999
        temp_i = self.image_i.copy()
        temp1_i = self.image_i.copy()
        gray_i = cv2.cvtColor(temp_i, cv2.COLOR_BGR2GRAY)
        gray_i = numpy.float32(gray_i)
        dst_i = cv2.cornerHarris(gray_i,2,3,0.025)
        dst_i = cv2.dilate(dst_i,None)
        # Threshold for an optimal value, it may vary depending on the image.
        temp_i[dst_i<0.01*dst_i.max()]=[0,0,0]
        temp_i[dst_i>=0.01*dst_i.max()]=[255,255,255]
        temp1_i[dst_i>0.01*dst_i.max()]=[0,0,255]
        hist_i = cv2.calcHist([temp_i], [0], None, [256], [0, 256])
        temp_j = self.image_j.copy()
        temp1_j = self.image_j.copy()
        gray_j = cv2.cvtColor(temp_j, cv2.COLOR_BGR2GRAY)
        gray_j = numpy.float32(gray_j)
        dst_j = cv2.cornerHarris(gray_j,2,3,0.025)
        dst_j = cv2.dilate(dst_j,None)
        # Threshold for an optimal value, it may vary depending on the image.
        temp_j[dst_j<0.01*dst_j.max()]=[0,0,0]
        temp_j[dst_j>=0.01*dst_j.max()]=[255,255,255]
        temp1_j[dst_j>0.01*dst_j.max()]=[0,0,255]
        hist_j = cv2.calcHist([temp_j], [0], None, [256], [0, 256])

        self.measure = cv2.compareHist(hist_i, hist_j, cv.CV_COMP_CORREL)
        self.assertGreater(self.measure, self.threshold)
        print self.measure
        cv2.imshow('Input X',temp1_i)
        cv2.waitKey(0)
        cv2.imshow('Input Y',temp1_j)
        cv2.waitKey(0)
example.py 文件源码 项目:test-automation 作者: openstax 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def Canny_edge(self):
        self.threshold = .999999999999999        
        gray_i = cv2.cvtColor(self.image_i, cv2.COLOR_BGR2GRAY)
        edges_i = cv2.Canny(gray_i,100,200)
        gray_j = cv2.cvtColor(self.image_j, cv2.COLOR_BGR2GRAY)
        edges_j = cv2.Canny(gray_j,100,200)

        hist_i = cv2.calcHist([edges_i], [0], None, [256], [0, 256])
        hist_j = cv2.calcHist([edges_j], [0], None, [256], [0, 256])

        self.measure = cv2.compareHist(hist_i, hist_j, cv.CV_COMP_CORREL)
        self.assertGreater(self.measure, self.threshold)
        print self.measure
#        cv2.imshow(self.image_i)
#        cv2.imshow(self.image_j)
svm.py 文件源码 项目:test-automation 作者: openstax 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def gray_histogram_cmp_corr(self):
        self.threshold = .9

        gray_i = cv2.cvtColor(self.image_i, cv2.COLOR_BGR2GRAY)
        hist_i = cv2.calcHist([gray_i], [0], None, [256], [0, 256])

        gray_j = cv2.cvtColor(self.image_j, cv2.COLOR_BGR2GRAY)
        hist_j = cv2.calcHist([gray_j], [0], None, [256], [0, 256])

        self.measure = cv2.compareHist(hist_i, hist_j, cv.CV_COMP_CORREL)
        self.assertGreater(self.measure, self.threshold)
svm.py 文件源码 项目:test-automation 作者: openstax 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def gray_histogram_cmp_bhatta(self):
        self.threshold = .07

        gray_i = cv2.cvtColor(self.image_i, cv2.COLOR_BGR2GRAY)
        hist_i = cv2.calcHist([gray_i], [0], None, [256], [1, 256])

        gray_j = cv2.cvtColor(self.image_j, cv2.COLOR_BGR2GRAY)
        hist_j = cv2.calcHist([gray_j], [0], None, [256], [1, 256])

        self.measure = cv2.compareHist(hist_i, hist_j, cv.CV_COMP_BHATTACHARYYA)
        self.assertGreater(self.measure, self.threshold)
svm.py 文件源码 项目:test-automation 作者: openstax 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def Harris_Corner(self):
        self.threshold = 0.999999999999
        temp_i = self.image_i.copy()
        temp1_i = self.image_i.copy()
        gray_i = cv2.cvtColor(temp_i, cv2.COLOR_BGR2GRAY)
        gray_i = numpy.float32(gray_i)
        dst_i = cv2.cornerHarris(gray_i,2,3,0.025)
        dst_i = cv2.dilate(dst_i,None)
        # Threshold for an optimal value, it may vary depending on the image.
        temp_i[dst_i<0.01*dst_i.max()]=[0,0,0]
        temp1_i[dst_i>0.01*dst_i.max()]=[0,0,255]
        hist_i = cv2.calcHist([temp_i], [0], None, [256], [0, 256])
        temp_j = self.image_j.copy()
        temp1_j = self.image_j.copy()
        gray_j = cv2.cvtColor(temp_j, cv2.COLOR_BGR2GRAY)
        gray_j = numpy.float32(gray_j)
        dst_j = cv2.cornerHarris(gray_j,2,3,0.025)
        dst_j = cv2.dilate(dst_j,None)
        # Threshold for an optimal value, it may vary depending on the image.
        temp_j[dst_j<0.01*dst_j.max()]=[0,0,0]
        temp1_j[dst_j>0.01*dst_j.max()]=[0,0,255]
        hist_j = cv2.calcHist([temp_j], [0], None, [256], [0, 256])


        self.measure = cv2.compareHist(hist_i, hist_j, cv.CV_COMP_CORREL)
        self.assertGreater(self.measure, self.threshold)
svm.py 文件源码 项目:test-automation 作者: openstax 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def rgb_histogram(self):
        self.threshold = 0.999999999999999
        hist_i = cv2.calcHist([self.image_i], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])

        hist_j = cv2.calcHist([self.image_j], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])

        hist_flatten_i = hist_i.flatten()
        hist_flatten_j = hist_j.flatten()

        self.measure = cv2.compareHist(hist_flatten_i, hist_flatten_j, cv.CV_COMP_CORREL)

        self.assertGreater(self.measure, self.threshold)
face_detection.py 文件源码 项目:smart-cam 作者: smart-cam 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __get_roi_hist(self, faces_rects, frame):
        faces_roi_hists = []
        for (x, y, w, h) in faces_rects:
            roi = frame[y:y+h, x:x+w]
            hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
            mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
            roi_hist = cv2.calcHist([hsv_roi],[0], mask, [180], [0,180])
            roi_hist = cv2.normalize(roi_hist,roi_hist, 0, 255, cv2.NORM_MINMAX)
            faces_roi_hists.append(roi_hist)
        return faces_roi_hists
featuresLBP2.py 文件源码 项目:pyImageClassification 作者: tyiannak 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def getLBP(img):
    img2 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    radius = 1
    n_points = 8 * radius
    lbpImage = (local_binary_pattern(img2, n_points, radius)).astype(int)**(1.0/radius)

    # block processing:
    lbpImages = block_view(lbpImage, ( int(lbpImage.shape[0] / 2), int(lbpImage.shape[1] / 4)))


    count = 0

    LBP = np.array([]); 
    for i in range(lbpImages.shape[0]):         # for each block:
        for j in range(lbpImages.shape[1]):
            count += 1
#           plt.subplot(4,2,count)
#           plt.imshow(lbpImages[i,j,:,:],cmap = cm.Greys_r)
#           plt.subplot(4,2,count+4*2/2)
#           print count*2+1
            LBPt = cv2.calcHist([lbpImages[i,j,:,:].astype('uint8')], [0], None, [8], [0, 256]) 
            LBP = np.append(LBP, LBPt[:,0]);
#           plt.plot(LBPt)
#   plt.show()


    Fnames = ["LBP"+str(i).zfill(2) for i in range(len(LBP))]

    return normalize(LBP).tolist(), Fnames
particle_filter.py 文件源码 项目:cbpt 作者: egrinstein 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def calc_hist(image):


    mask = cv2.inRange(image, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
    hist = cv2.calcHist([image],[0],mask,[180],[0,180])
    #hist = cv2.calcHist(image,[0,1],None,[10,10],[0,180,0,255])
    cv2.normalize(hist,hist,0,1,norm_type=cv2.NORM_MINMAX)
    return hist
histogram.py 文件源码 项目:QScode 作者: PierreHao 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def histogram(self, image, mask=None):
        #Extract a 3D color histogram from the masked region of the image, using
        #the supplied number of bins per channel, then normalize the histogram
        new_im = imcrop(image)
        hist = cv2.calcHist([new_im], [0, 1, 2], mask, self.bins,[0, 256, 0, 256, 0, 256])
        hist = cv2.normalize(hist).flatten()
        return hist
image_utils.py 文件源码 项目:VisionTest 作者: SamCB 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_histogram(image, histogram_scale):
    h = cv2.calcHist([image], [0], None, [histogram_scale], [0, 256]).flatten()
    return h/256


问题


面经


文章

微信
公众号

扫码关注公众号