python类normalize()的实例源码

DisparityComputer.py 文件源码 项目:img2d3d_segmentation 作者: psodhi 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def stereoSGBM(self, img_left, img_right):

        stereo = cv2.StereoSGBM(minDisparity=0, numDisparities=self._max_disparity, SADWindowSize=self._sad_winsize, uniquenessRatio=self._uniqueness_ratio, P1=self._P1, P2=self._P2, speckleWindowSize=self._speckle_winsize, speckleRange=self._speckle_range)
        disp_left = stereo.compute(img_left, img_right)
        disp_left_visual = np.zeros((img_left.shape[0], img_left.shape[1]), np.uint8)
        disp_left_visual = cv2.normalize(disp_left, alpha=0, beta=self._max_disparity, norm_type=cv2.cv.CV_MINMAX, dtype=cv2.cv.CV_8U)

        img_foreground, disp_foreground = self.extractForeground(disp_left_visual, img_left, self._fgnd_disp_thresh)

        return (disp_left_visual, disp_foreground, img_foreground)
HandRecognition.py 文件源码 项目:hand-gesture-recognition-opencv 作者: mahaveerverma 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def hand_capture(frame_in,box_x,box_y):
    hsv = cv2.cvtColor(frame_in, cv2.COLOR_BGR2HSV)
    ROI = np.zeros([capture_box_dim*capture_box_count,capture_box_dim,3], dtype=hsv.dtype)
    for i in xrange(capture_box_count):
        ROI[i*capture_box_dim:i*capture_box_dim+capture_box_dim,0:capture_box_dim] = hsv[box_y[i]:box_y[i]+capture_box_dim,box_x[i]:box_x[i]+capture_box_dim]
    hand_hist = cv2.calcHist([ROI],[0, 1], None, [180, 256], [0, 180, 0, 256])
    cv2.normalize(hand_hist,hand_hist, 0, 255, cv2.NORM_MINMAX)
    return hand_hist

# 2. Filters and threshold
mvmc.py 文件源码 项目:ddnn 作者: kunglab 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def compute_hist(im):
    hist = cv2.calcHist([im], [0, 1, 2], None, [8, 8, 8],
                        [0, 256, 0, 256, 0, 256])
    hist = cv2.normalize(hist).flatten()
    return hist
Q3Support.py 文件源码 项目:Recognition 作者: thautwarm 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self,frame,rect,method='m'):
        r,c,h,w=rect
        roi = frame[r:r+h, c:c+w]
        mask = cv2.inRange(roi, np.array((0.)), np.array((255.)))
        roi_hist = cv2.calcHist([roi],[0],mask,[16],[0,255])
        roi_hist=cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
        plotRects(frame,[rect])
        cv2.waitKey(0) 
        cv2.destroyAllWindows()
        self.roi_hist=roi_hist
        self.track_window=tuple(rect)
        self.m=method
        self.frame=frame
Q3Support.py 文件源码 项目:Recognition 作者: thautwarm 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def calHist(frame,rect):
        r,c,h,w=rect
        roi = frame[r:r+h, c:c+w]
        mask = cv2.inRange(roi, np.array((0.)), np.array((255.)))
        roi_hist = cv2.calcHist([roi],[0],mask,[255],[0,255])
        roi_hist=cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
        return roi_hist
Color_balance.py 文件源码 项目:UAV-and-TrueOrtho 作者: LeonChen66 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def simplest_cb(img, percent):
    assert img.shape[2] == 3
    assert percent > 0 and percent < 100

    half_percent = percent / 200.0

    channels = cv2.split(img)

    out_channels = []
    for channel in channels:
        assert len(channel.shape) == 2
        # find the low and high precentile values (based on the input percentile)
        height, width = channel.shape
        vec_size = width * height
        flat = channel.reshape(vec_size)

        assert len(flat.shape) == 1

        flat = np.sort(flat)

        n_cols = flat.shape[0]

        low_val  = flat[math.floor(n_cols * half_percent)]
        high_val = flat[math.ceil( n_cols * (1.0 - half_percent))]

        print "Lowval: ", low_val
        print "Highval: ", high_val

        # saturate below the low percentile and above the high percentile
        thresholded = apply_threshold(channel, low_val, high_val)
        # scale the channel
        normalized = cv2.normalize(thresholded, thresholded.copy(), 0, 255, cv2.NORM_MINMAX)
        out_channels.append(normalized)

    return cv2.merge(out_channels)
star_detection.py 文件源码 项目:pynephoscope 作者: neXyon 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def hist_lines(image, start, end):
        scale = 4
        height = 1080

        result = np.zeros((height, 256 * scale, 1))

        hist = cv2.calcHist([image], [0], None, [256], [start, end])
        cv2.normalize(hist, hist, 0, height, cv2.NORM_MINMAX)
        hist = np.int32(np.around(hist))

        for x, y in enumerate(hist):
            cv2.rectangle(result, (x * scale, 0), ((x + 1) * scale, y), (255), -1)

        result = np.flipud(result)
        return result
class_PlantIdentifier.py 文件源码 项目:Farmbot_GeneralAP 作者: SpongeYao 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def NDIimage(self, arg_debug= False):
        G= self.imgRGB_G.astype('float')
        R= self.imgRGB_R.astype('float')
        NDIimage= 128*((G-R)/(G+R)+1)
        NDIimage= cv2.normalize(NDIimage, NDIimage, 0, 255, cv2.NORM_MINMAX)
        if arg_debug:
            cv2.imwrite('Debug/debug_NDIimage.jpg', NDIimage)
        return NDIimage
class_PlantIdentifier.py 文件源码 项目:Farmbot_GeneralAP 作者: SpongeYao 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def ExGimage(self, arg_debug= False):
        print 'ExGimage'
        R_star= self.imgRGB_R.astype('float')/255
        G_star= self.imgRGB_G.astype('float')/255
        B_star= self.imgRGB_B.astype('float')/255
        ExGimage= (2*G_star-R_star- B_star)/(G_star+ B_star+ R_star)
        ExGimage= cv2.normalize(ExGimage, ExGimage, 0, 255, cv2.NORM_MINMAX)
        if arg_debug:
            cv2.imwrite('Debug/debug_ExGimage.jpg', ExGimage)
        #print ExGimage 
        return ExGimage
test_silhouettes.py 文件源码 项目:AMBR 作者: Algomorph 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def process_frame(self):
        super().process_frame()
        if self.cur_frame_number == self.ground_truth_frame_numbers[self.gt_frame_ix]:
            # we have struck upon a frame we can evaluate against ground truth
            gt_file_path = os.path.join(self.ground_truth_folder, self.ground_truth_frame_filenames[self.gt_frame_ix])
            gt_mask = cv2.imread(gt_file_path, cv2.IMREAD_GRAYSCALE)
            self.gt_frame_ix += 1  # advance for next hit
            test_mask = self.mask.copy()
            test_mask[test_mask < MaskLabel.PERSISTENCE_LABEL.value] = 0
            test_mask[test_mask >= MaskLabel.PERSISTENCE_LABEL.value] = 1
            gt_mask[gt_mask == 255] = 1
            test_mask = test_mask.astype(np.int8)  # to allow subtraction
            errors = test_mask - gt_mask
            false_positives = errors.copy()
            false_negatives = errors.copy()
            false_positives[false_positives == -1] = 0
            false_negatives[false_negatives == 1] = 0
            n_fp = false_positives.sum()
            n_fn = -false_negatives.sum()

            penalty_map = cv2.filter2D(gt_mask, cv2.CV_32FC1, self.smoothing_kernel)
            cv2.normalize(penalty_map, penalty_map, 0, 1.0, cv2.NORM_MINMAX)
            weighted_fn = (penalty_map[false_negatives == -1]).sum()
            penalty_map = penalty_map.max() - penalty_map  # invert
            weighted_fp = (penalty_map[false_positives == 1]).sum()

            self.cum_fp += n_fp
            self.cum_fn += n_fn
            self.cum_wfn += weighted_fn
            self.cum_wfp += weighted_fp
            self.tested_frame_coutner += 1
face_detection.py 文件源码 项目:smart-cam 作者: smart-cam 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __get_roi_hist(self, faces_rects, frame):
        faces_roi_hists = []
        for (x, y, w, h) in faces_rects:
            roi = frame[y:y+h, x:x+w]
            hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
            mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
            roi_hist = cv2.calcHist([hsv_roi],[0], mask, [180], [0,180])
            roi_hist = cv2.normalize(roi_hist,roi_hist, 0, 255, cv2.NORM_MINMAX)
            faces_roi_hists.append(roi_hist)
        return faces_roi_hists
prediction.py 文件源码 项目:image2text 作者: KleinYuan 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def _pre_processing(self, img):
        self.input_image_origin = img
        self.input_image = deepcopy(img)
        self.input_image = cv2.resize(self.input_image, (self.image_size, self.image_size))
        self.input_image = cv2.normalize(self.input_image, self.input_image, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
        self.input_image = [self.input_image]

        self.input_image = np.array(self.input_image)
        self.input_image = self.input_image.astype(np.float32)
        self.input_image = self.input_image.reshape(-1, self.image_size, self.image_size, self.num_channels)
agent.py 文件源码 项目:reinforcement-learning 作者: urielsade 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def process(state, W, H):
    state = cv2.resize(state, (W, H))
    state = cv2.cvtColor(state, cv2.COLOR_RGB2GRAY)
    #cv2.imwrite('test.png', state)
    #state = cv2.normalize(state, state, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
    state = np.reshape(state, [W, H, 1])
    return state
particle_filter.py 文件源码 项目:cbpt 作者: egrinstein 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def calc_hist(image):


    mask = cv2.inRange(image, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
    hist = cv2.calcHist([image],[0],mask,[180],[0,180])
    #hist = cv2.calcHist(image,[0,1],None,[10,10],[0,180,0,255])
    cv2.normalize(hist,hist,0,1,norm_type=cv2.NORM_MINMAX)
    return hist
motion.py 文件源码 项目:pygta5 作者: Sentdex 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def motion_detection(t_minus, t_now, t_plus):
    delta_view = delta_images(t_minus, t_now, t_plus)
    retval, delta_view = cv2.threshold(delta_view, 16, 255, 3)
    cv2.normalize(delta_view, delta_view, 0, 255, cv2.NORM_MINMAX)
    img_count_view = cv2.cvtColor(delta_view, cv2.COLOR_RGB2GRAY)
    delta_count = cv2.countNonZero(img_count_view)
    dst = cv2.addWeighted(screen,1.0, delta_view,0.6,0)
    delta_count_last = delta_count
    return delta_count
motion.py 文件源码 项目:pygta5 作者: Sentdex 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def motion_detection(t_minus, t_now, t_plus):
    delta_view = delta_images(t_minus, t_now, t_plus)
    retval, delta_view = cv2.threshold(delta_view, 16, 255, 3)
    cv2.normalize(delta_view, delta_view, 0, 255, cv2.NORM_MINMAX)
    img_count_view = cv2.cvtColor(delta_view, cv2.COLOR_RGB2GRAY)
    delta_count = cv2.countNonZero(img_count_view)
    dst = cv2.addWeighted(screen,1.0, delta_view,0.6,0)
    delta_count_last = delta_count
    return delta_count
motion.py 文件源码 项目:pygta5 作者: Sentdex 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def motion_detection(t_minus, t_now, t_plus):
    delta_view = delta_images(t_minus, t_now, t_plus)
    retval, delta_view = cv2.threshold(delta_view, 16, 255, 3)
    cv2.normalize(delta_view, delta_view, 0, 255, cv2.NORM_MINMAX)
    img_count_view = cv2.cvtColor(delta_view, cv2.COLOR_RGB2GRAY)
    delta_count = cv2.countNonZero(img_count_view)
    dst = cv2.addWeighted(screen,1.0, delta_view,0.6,0)
    delta_count_last = delta_count
    return delta_count
epic_flow.py 文件源码 项目:videoseg 作者: pathak22 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def compute_flow(impath1, impath2, outdir,
                    fbcodepath=os.getenv("HOME") + '/fbcode'):
    stem = os.path.splitext(os.path.basename(impath1))[0]
    deepmatch_cmd = os.path.join(fbcodepath,
                                    '_bin/experimental/deeplearning/dpathak' +
                                    '/video-processing/deepmatch/deepmatch')
    call([deepmatch_cmd, impath1, impath2, '-out',
                os.path.join(outdir, stem + '_sparse.txt'), '-downscale', '2'])
    img1 = cv2.imread(impath1).astype(float)
    M = np.zeros((img1.shape[0], img1.shape[1]), dtype=np.float32)
    filt = np.array([[1., -1.]]).reshape((1, -1))
    for c in range(3):
        gx = convolve2d(img1[:, :, c], filt, mode='same')
        gy = convolve2d(img1[:, :, c], filt.T, mode='same')
        M = M + gx**2 + gy**2

    M = M / np.max(M)
    with open(os.path.join(outdir, '_edges.bin'), 'w') as f:
        M.tofile(f)

    epicflow_command = os.path.join(fbcodepath,
                                    '_bin/experimental/deeplearning/dpathak' +
                                    '/video-processing/epicflow/epicflow')
    call([epicflow_command, impath1, impath2,
                os.path.join(outdir, '_edges.bin'),
                os.path.join(outdir, stem + '_sparse.txt'),
                os.path.join(outdir, 'flow.flo')])

    flow = read_flo(os.path.join(outdir, 'flow.flo'))
    hsv = np.zeros_like(img1).astype(np.uint8)
    hsv[..., 1] = 255
    mag, ang = cv2.cartToPolar(flow[..., 0].astype(float),
                                flow[..., 1].astype(float))
    hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
    hsv[..., 0] = ang * 180 / np.pi / 2
    bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    cv2.imwrite(os.path.join(outdir, stem + '_flow.png'), bgr)
deepmatch.py 文件源码 项目:videoseg 作者: pathak22 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def run_deepmatch(imname1, imname2):
    command = os.getenv("HOME") + '/fbcode/_bin/experimental/' + \
        'deeplearning/dpathak/video-processing/deepmatch/deepmatch'
    call([command, imname1, imname2,
            '-out', os.getenv("HOME") + '/local/data/trash/tmp.txt',
            '-downscale', '2'])
    with open(os.getenv("HOME") + '/local/data/trash/tmp.txt', 'r') as f:
        lines = f.readlines()

    lines = [x.strip().split(' ') for x in lines]
    vals = np.array([[float(y) for y in x] for x in lines])
    x = ((vals[:, 0] - 8.) / 16.).astype(int)
    y = ((vals[:, 1] - 8.) / 16.).astype(int)
    U = np.zeros((int(np.max(y)) + 1, int(np.max(x)) + 1))
    U[(y, x)] = vals[:, 2] - vals[:, 0]
    V = np.zeros((int(np.max(y)) + 1, int(np.max(x)) + 1))
    V[(y, x)] = vals[:, 3] - vals[:, 1]

    img1 = cv2.imread(imname1)
    U1 = cv2.resize(U, (img1.shape[1], img1.shape[0]))
    V1 = cv2.resize(V, (img1.shape[1], img1.shape[0]))

    mag, ang = cv2.cartToPolar(U1, V1)
    print(np.max(mag))
    hsv = np.zeros_like(img1)
    hsv[..., 1] = 255
    hsv[..., 0] = ang * 180 / np.pi / 2
    hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
    bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    return bgr
MR.py 文件源码 项目:RFCN 作者: zengxianyu 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __MR_fill_superpixel_with_saliency(self,labels,saliency_score):
        sa_img = labels.copy().astype(float)
        for i in range(sp.amax(labels)+1):
            mask = labels == i
            sa_img[mask] = saliency_score[i]
        return cv2.normalize(sa_img,None,0,255,cv2.NORM_MINMAX)


问题


面经


文章

微信
公众号

扫码关注公众号