python类normalize()的实例源码

EdgeHistogramComputer.py 文件源码 项目:imgpedia 作者: scferrada 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def compute(self, frame):
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        descriptor = []
        dominantGradients = np.zeros_like(frame)
        maxGradient = cv2.filter2D(frame, cv2.CV_32F, self.kernels[0])
        maxGradient = np.absolute(maxGradient)
        for k in range(1,len(self.kernels)):
            kernel = self.kernels[k]
            gradient = cv2.filter2D(frame, cv2.CV_32F, kernel)
            gradient = np.absolute(gradient)
            np.maximum(maxGradient, gradient, maxGradient)
            indices = (maxGradient == gradient)
            dominantGradients[indices] = k

        frameH, frameW = frame.shape
        for row in range(self.rows):
            for col in range(self.cols):
                mask = np.zeros_like(frame)
                mask[((frameH/self.rows)*row):((frameH/self.rows)*(row+1)),(frameW/self.cols)*col:((frameW/self.cols)*(col+1))] = 255
                hist = cv2.calcHist([dominantGradients], [0], mask, self.bins, self.range)
                hist = cv2.normalize(hist, None)
                descriptor.append(hist)
        return np.concatenate([x for x in descriptor])
OrientedGradientsComputer.py 文件源码 项目:imgpedia 作者: scferrada 项目源码 文件源码 阅读 68 收藏 0 点赞 0 评论 0
def compute(self, frame):
        #frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        dx = cv2.filter2D(frame, cv2.CV_32F, self.xkernel)
        dy = cv2.filter2D(frame, cv2.CV_32F, self.ykernel)
        orientations = np.zeros_like(dx)
        magnitudes = np.zeros_like(dx)
        cv2.cartToPolar(dx,dy, magnitudes,orientations)
        descriptor = []
        frameH, frameW = frame.shape
        mask_threshold = magnitudes <= self.threshold
        for row in range(self.rows):
            for col in range(self.cols):
                mask = np.zeros_like(frame)
                mask[((frameH/self.rows)*row):((frameH/self.rows)*(row+1)),(frameW/self.cols)*col:((frameW/self.cols)*(col+1))] = 1
                mask[mask_threshold] = 0
                a_, b_ = mask.shape
                hist = cv2.calcHist([orientations], self.channel, mask, [self.bins], self.range)
                hist = cv2.normalize(hist, None)
                descriptor.append(hist)
        return np.concatenate([x for x in descriptor])
preprocess.py 文件源码 项目:speed 作者: keon 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def optical_flow(one, two):
    """
    method taken from (https://chatbotslife.com/autonomous-vehicle-speed-estimation-from-dashboard-cam-ca96c24120e4)
    """
    one_g = cv2.cvtColor(one, cv2.COLOR_RGB2GRAY)
    two_g = cv2.cvtColor(two, cv2.COLOR_RGB2GRAY)
    hsv = np.zeros((120, 320, 3))
    # set saturation
    hsv[:,:,1] = cv2.cvtColor(two, cv2.COLOR_RGB2HSV)[:,:,1]
    # obtain dense optical flow paramters
    flow = cv2.calcOpticalFlowFarneback(one_g, two_g, flow=None,
                                        pyr_scale=0.5, levels=1, winsize=15,
                                        iterations=2,
                                        poly_n=5, poly_sigma=1.1, flags=0)
    # convert from cartesian to polar
    mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1])
    # hue corresponds to direction
    hsv[:,:,0] = ang * (180/ np.pi / 2)
    # value corresponds to magnitude
    hsv[:,:,2] = cv2.normalize(mag,None,0,255,cv2.NORM_MINMAX)
    # convert HSV to int32's
    hsv = np.asarray(hsv, dtype= np.float32)
    rgb_flow = cv2.cvtColor(hsv,cv2.COLOR_HSV2RGB)
    return rgb_flow
rgbhistogram.py 文件源码 项目:Image-search 作者: rahulremanan 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def describe(self, image):
        # Compute a 3D histogram in the RGB colorspace and normalize.
        hist = cv2.calcHist([image], [0, 1, 2],
            None, self.bins, [0, 256, 0, 256, 0, 256])
        hist = cv2.normalize(hist, hist)

        # Return the 3D histogram output as a flattened array.
        return hist.flatten()
get_hand_gestures.py 文件源码 项目:tbotnav 作者: patilnabhi 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def depth_callback(self, ros_image):
        try:
            inImg = self.bridge.imgmsg_to_cv2(ros_image)
        except CvBridgeError, e:
            print e

        inImgarr = np.array(inImg, dtype=np.uint16)
        # inImgarr = cv2.GaussianBlur(inImgarr, (3, 3), 0)
        # cv2.normalize(inImgarr, inImgarr, 0, 1, cv2.NORM_MINMAX) 

        self.outImg, self.num_fingers = self.process_depth_image(inImgarr) 
        # outImg = self.process_depth_image(inImgarr) 
        # rate = rospy.Rate(10)        
        self.num_pub.publish(self.num_fingers)
        # self.img_pub.publish(self.bridge.cv2_to_imgmsg(self.outImg, "bgr8"))
        # rate.sleep()

        cv2.imshow("Hand Gesture Recognition", self.outImg)
        cv2.waitKey(3)
FlowCalculator.py 文件源码 项目:VerySharp 作者: wilecoyote2015 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def writeOpticalFlowImage(self, index, optical_flow):
        filename = "flow_" + str(index) + ".png"
        output_path = os.path.join(self.optical_flow_output_directory, filename)

        # create hsv image
        shape_optical_flow = optical_flow.shape[:-1]
        shape_hsv = [shape_optical_flow[0], shape_optical_flow[1], 3]
        hsv = np.zeros(shape_hsv, np.float32)

        # set saturation to 255
        hsv[:,:,1] = 255

        # create colorful illustration of optical flow
        mag, ang = cv2.cartToPolar(optical_flow[:,:,0], optical_flow[:,:,1])
        hsv[:,:,0] = ang*180/np.pi/2
        hsv[:,:,2] = cv2.normalize(mag,None,0,255,cv2.NORM_MINMAX)
        bgr = cv2.cvtColor(hsv,cv2.COLOR_HSV2BGR)

        cv2.imwrite(output_path, bgr)
descriptors.py 文件源码 项目:object-classification 作者: HenrYxZ 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def vlad(descriptors, centers):
    """
    Calculate the Vector of Locally Aggregated Descriptors (VLAD) which is a global descriptor from a group of
    descriptors and centers that are codewords of a codebook, obtained for example with K-Means.

    Args:
        descriptors (numpy float matrix): The local descriptors.
        centers (numpy float matrix): The centers are points representatives of the classes.

    Returns:
        numpy float array: The VLAD vector.
    """
    dimensions = len(descriptors[0])
    vlad_vector = np.zeros((len(centers), dimensions), dtype=np.float32)
    for descriptor in descriptors:
        nearest_center, center_idx = utils.find_nn(descriptor, centers)
        for i in range(dimensions):
            vlad_vector[center_idx][i] += (descriptor[i] - nearest_center[i])
    # L2 Normalization
    vlad_vector = cv2.normalize(vlad_vector)
    vlad_vector = vlad_vector.flatten()
    return vlad_vector
nlc.py 文件源码 项目:videoseg 作者: pathak22 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def normalize_nn(transM, sigma=1):
    """
    Normalize transition matrix using gaussian weighing
    Input:
        transM: (k,k)
        sigma: var=sigma^2 of gaussian weight between elements
    Output: transM: (k,k)
    """
    # Make weights Gaussian and normalize
    k = transM.shape[0]
    transM[np.nonzero(transM)] = np.exp(
        -np.square(transM[np.nonzero(transM)]) / sigma**2)
    transM[np.arange(k), np.arange(k)] = 1.
    normalization = np.dot(transM, np.ones(k))
    # This is inefficient, bottom line is better ..
    # transM = np.dot(np.diag(1. / normalization), transM)
    transM = (1. / normalization).reshape((-1, 1)) * transM
    return transM
nlc.py 文件源码 项目:videoseg 作者: pathak22 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def consensus_vote(votes, transM, frameEnd, iters):
    """
    Perform iterative consensus voting
    """
    sTime = time.time()
    for t in range(iters):
        votes = np.dot(transM, votes)
        # normalize per frame
        for i in range(frameEnd.shape[0]):
            currStartF = 1 + frameEnd[i - 1] if i > 0 else 0
            currEndF = frameEnd[i]
            frameVotes = np.max(votes[currStartF:1 + currEndF])
            votes[currStartF:1 + currEndF] /= frameVotes + (frameVotes <= 0)
    eTime = time.time()
    print('Consensus voting finished: %.2f s' % (eTime - sTime))
    return votes
face_detector.py 文件源码 项目:key-face 作者: gabrielilharco 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def detectTemplateMatching(self, img):
        self.templateMatchingCurrentTime = cv2.getTickCount()
        duration = (self.templateMatchingCurrentTime - self.templateMatchingStartTime)/cv2.getTickFrequency()
        if duration > settings.templateMatchingDuration or self.trackedFaceTemplate[2] == 0 or self.trackedFaceTemplate[3] == 0:
            self.foundFace = False
            self.isTemplateMatchingRunning = False
            return

        faceTemplate = self.getSubRect(img, self.trackedFaceTemplate)
        roi = self.getSubRect(img, self.trackedFaceROI)
        match = cv2.matchTemplate(roi, faceTemplate, cv2.TM_SQDIFF_NORMED)
        cv2.normalize(match, match, 0, 1, cv2.NORM_MINMAX, -1)


        minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(match)
        foundTemplate = (
            minLoc[0] + self.trackedFaceROI[0],
            minLoc[1] + self.trackedFaceROI[1],
            self.trackedFaceTemplate[2],
            self.trackedFaceTemplate[3])

        self.trackedFaceTemplate = foundTemplate
        self.trackedFace = self.scaleRect(self.trackedFaceTemplate, img, 2)
        self.trackedFaceROI = self.scaleRect(self.trackedFace, img, 2)
generate_cascade_training_data.py 文件源码 项目:ObjectDetection 作者: PhilippParis 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def create_cascade_neg_data():
    img = cv2.imread(FLAGS.negatives_spritesheet)
    img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8U)
    height, width, _ = img.shape

    c = 0
    txt = ""
    for y in xrange(0, height, FLAGS.image_size):
        for x in xrange(0, width, FLAGS.image_size):
            cv2.imwrite(FLAGS.output_dir + "/negatives/" + str(c) + ".png", img[y:y+FLAGS.image_size, x:x+FLAGS.image_size])
            txt += "negatives/" + str(c) + ".png" + "\n"
            c += 1

    with open(FLAGS.output_dir + "/negatives.info", 'w') as file:
        file.write(txt)        

    return c

# ========================================== #
image_utils.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def im_normalize(im, lo=0, hi=255, dtype='uint8'):
    return cv2.normalize(im, alpha=lo, beta=hi, norm_type=cv2.NORM_MINMAX, dtype={'uint8': cv2.CV_8U, \
                                                                                  'float32': cv2.CV_32F, \
                                                                                  'float64': cv2.CV_64F}[dtype])
recipe-578248.py 文件源码 项目:code 作者: ActiveState 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def getProjectionMat(self, from_E=True):
        ei,eii = self.getEpipoles()
        ei = cv2.normalize(ei).flatten()
        eii  = cv2.normalize(eii).flatten()
        if from_E == True:
            F21,F31 = self.getFundamentalMat()
            H21 = H_from_E(F21)
            H31 = H_from_E(F31)
            v1 = r_[0.5,0.5,50,1.]
            v2 = r_[1.,1.,51,1.]
            for H in H21:
                ln2 = cross(dot(H,v1)[:3],dot(H,v2)[:3])
                pt3 = self.pl_(v1[:3]/v1[3], ln2)
                pt3 /= pt3[2]
                print pt3
                for H2 in H31:
                    print dot(H2,v1)[:3]/dot(H2,v1)[:3][2]


            return H21,H31
        else:
            Pi = eye(4)
            Pi[:3,:3] = array([dot(t,eii) for t in self.T]).T
            Pi[:3,3] = ei
#            K = cv2.decomposeProjectionMatrix(Pi[:3])[0]
#            Pi[:3] = dot(cv2.invert(K)[1],Pi[:3])
            return Pi
preprocess.py 文件源码 项目:pokedex-as-it-should-be 作者: leotok 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def extract_color_histogram(image, bins=(8, 8, 8)):
    # extract a 3D color histogram from the HSV color space using
    # the supplied number of `bins` per channel
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    hist = cv2.calcHist([hsv], [0, 1, 2], None, bins, [0, 180, 0, 256, 0, 256])

    # handle normalizing the histogram if we are using OpenCV 2.4.X
    if imutils.is_cv2():
        hist = cv2.normalize(hist)

    # otherwise, perform "in place" normalization in OpenCV 3 (I
    # personally hate the way this is done
    else:
        cv2.normalize(hist, hist)

    # return the flattened histogram as the feature vector
    return hist.flatten()
optical_flow.py 文件源码 项目:speed 作者: keon 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def optical_flow(one, two):
    """
    method taken from https://chatbotslife.com/autonomous-vehicle-speed-estimation-from-dashboard-cam-ca96c24120e4
    input: image_current, image_next (RGB images)
    calculates optical flow magnitude and angle and places it into HSV image
    """
    one_g = cv2.cvtColor(one, cv2.COLOR_RGB2GRAY)
    two_g = cv2.cvtColor(two, cv2.COLOR_RGB2GRAY)
    hsv = np.zeros((120, 320, 3))
    # set saturation
    hsv[:,:,1] = cv2.cvtColor(two, cv2.COLOR_RGB2HSV)[:,:,1]
    # obtain dense optical flow paramters
    flow = cv2.calcOpticalFlowFarneback(one_g, two_g, flow=None,
                                        pyr_scale=0.5,
                                        levels=1,
                                        winsize=10,
                                        iterations=2,
                                        poly_n=5,
                                        poly_sigma=1.1,
                                        flags=0)
    # convert from cartesian to polar
    mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1])
    # hue corresponds to direction
    hsv[:,:,0] = ang * (180/ np.pi / 2)
    # value corresponds to magnitude
    hsv[:,:,2] = cv2.normalize(mag,None,0,255,cv2.NORM_MINMAX)
    # convert HSV to int32's
    hsv = np.asarray(hsv, dtype= np.float32)
    rgb_flow = cv2.cvtColor(hsv,cv2.COLOR_HSV2RGB)
    return rgb_flow
blur_image.py 文件源码 项目:DeblurGAN 作者: KupynOrest 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def blur_image(self, save=False, show=False):
        if self.part is None:
            psf = self.PSFs
        else:
            psf = [self.PSFs[self.part]]
        yN, xN, channel = self.shape
        key, kex = self.PSFs[0].shape
        delta = yN - key
        assert delta >= 0, 'resolution of image should be higher than kernel'
        result=[]
        if len(psf) > 1:
            for p in psf:
                tmp = np.pad(p, delta // 2, 'constant')
                cv2.normalize(tmp, tmp, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
                # blured = np.zeros(self.shape)
                blured = cv2.normalize(self.original, self.original, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX,
                                       dtype=cv2.CV_32F)
                blured[:, :, 0] = np.array(signal.fftconvolve(blured[:, :, 0], tmp, 'same'))
                blured[:, :, 1] = np.array(signal.fftconvolve(blured[:, :, 1], tmp, 'same'))
                blured[:, :, 2] = np.array(signal.fftconvolve(blured[:, :, 2], tmp, 'same'))
                blured = cv2.normalize(blured, blured, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
                blured = cv2.cvtColor(blured, cv2.COLOR_RGB2BGR)
                result.append(np.abs(blured))
        else:
            psf = psf[0]
            tmp = np.pad(psf, delta // 2, 'constant')
            cv2.normalize(tmp, tmp, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
            blured = cv2.normalize(self.original, self.original, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX,
                                   dtype=cv2.CV_32F)
            blured[:, :, 0] = np.array(signal.fftconvolve(blured[:, :, 0], tmp, 'same'))
            blured[:, :, 1] = np.array(signal.fftconvolve(blured[:, :, 1], tmp, 'same'))
            blured[:, :, 2] = np.array(signal.fftconvolve(blured[:, :, 2], tmp, 'same'))
            blured = cv2.normalize(blured, blured, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
            blured = cv2.cvtColor(blured, cv2.COLOR_RGB2BGR)
            result.append(np.abs(blured))
        self.result = result
        if show or save:
            self.__plot_canvas(show, save)
GrayHistogramComputer.py 文件源码 项目:imgpedia 作者: scferrada 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def compute(self, frame):
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        frameH, frameW = frame.shape
        descriptor = []
        for row in range(self.rows):
            for col in range(self.cols):
                mask = np.zeros_like(frame)
                mask[((frameH/self.rows)*row):((frameH/self.rows)*(row+1)),(frameW/self.cols)*col:((frameW/self.cols)*(col+1))] = 1
                hist = cv2.calcHist([frame], self.channel, mask, [self.bins], self.range)
                hist = cv2.normalize(hist, None)
                descriptor.append(hist)
        return np.concatenate([x for x in descriptor])
test_monkey.py 文件源码 项目:ATX 作者: NetEaseGame 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_features():
    from atx.drivers.android_minicap import AndroidDeviceMinicap
    cv2.namedWindow("preview")
    d = AndroidDeviceMinicap()

    # r, h, c, w = 200, 100, 200, 100
    # track_window = (c, r, w, h)
    # oldimg = cv2.imread('base1.png')
    # roi = oldimg[r:r+h, c:c+w]
    # hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
    # mask = cv2.inRange(hsv_roi, 0, 255)
    # roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0,180])
    # cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)
    # term_cirt = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT,  10, 1)


    while True:
        try:
            w, h = d._screen.shape[:2]
            img = cv2.resize(d._screen, (h/2, w/2))
            cv2.imshow('preview', img)

            hist = cv2.calcHist([img], [0], None, [256], [0,256])
            plt.plot(plt.hist(hist.ravel(), 256))
            plt.show()
            # if img.shape == oldimg.shape:
            #     # hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
            #     # ret, track_window = cv2.meanShift(hsv, track_window, term_cirt)
            #     # x, y, w, h = track_window
            #     cv2.rectangle(img, (x, y), (x+w, y+h), 255, 2)
            #     cv2.imshow('preview', img)
            # # cv2.imshow('preview', img)
            cv2.waitKey(1)
        except KeyboardInterrupt:
            break

    cv2.destroyWindow('preview')
forest.py 文件源码 项目:checkmymeat 作者: kendricktan 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def describe(image, mask = None):
    hist = cv2.calcHist([image], [0, 1, 2], mask, [8,8,8], [0, 256, 0, 256, 0, 256])    
    cv2.normalize(hist, hist)    
    return hist.flatten()
forest.py 文件源码 项目:checkmymeat 作者: kendricktan 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def describe(image, mask = None):
    hist = cv2.calcHist([image], [0, 1, 2], mask, [8,8,8], [0, 256, 0, 256, 0, 256])    
    cv2.normalize(hist, hist)    
    return hist.flatten()
predict.py 文件源码 项目:cervix-roi-segmentation-by-unet 作者: scottykwok 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def to_binary_mask(mask, t=0.00001):
    mask = inverse_preprocessing(mask)

    ### Threshold the RGB image  - This step increase sensitivity
    mask[mask > t] = 255
    mask[mask <= t] = 0

    ### To grayscale and normalize
    mask_gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
    mask_gray = cv2.normalize(src=mask_gray, dst=None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1)

    ### Auto binary threshold
    (thresh, mask_binary) = cv2.threshold(mask_gray, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
    return mask_binary
test_monkey.py 文件源码 项目:AutomatorX 作者: xiaoyaojjian 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_features():
    from atx.drivers.android_minicap import AndroidDeviceMinicap
    cv2.namedWindow("preview")
    d = AndroidDeviceMinicap()

    # r, h, c, w = 200, 100, 200, 100
    # track_window = (c, r, w, h)
    # oldimg = cv2.imread('base1.png')
    # roi = oldimg[r:r+h, c:c+w]
    # hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
    # mask = cv2.inRange(hsv_roi, 0, 255)
    # roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0,180])
    # cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)
    # term_cirt = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT,  10, 1)


    while True:
        try:
            w, h = d._screen.shape[:2]
            img = cv2.resize(d._screen, (h/2, w/2))
            cv2.imshow('preview', img)

            hist = cv2.calcHist([img], [0], None, [256], [0,256])
            plt.plot(plt.hist(hist.ravel(), 256))
            plt.show()
            # if img.shape == oldimg.shape:
            #     # hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
            #     # ret, track_window = cv2.meanShift(hsv, track_window, term_cirt)
            #     # x, y, w, h = track_window
            #     cv2.rectangle(img, (x, y), (x+w, y+h), 255, 2)
            #     cv2.imshow('preview', img)
            # # cv2.imshow('preview', img)
            cv2.waitKey(1)
        except KeyboardInterrupt:
            break

    cv2.destroyWindow('preview')
semiautoanno.py 文件源码 项目:semi-auto-anno 作者: moberweger 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def getImageDescriptors_HOG_cdist(self, all_emb, ref_emb, ref_mask):
        # unnormalized cosine distance for HOG
        dist = numpy.dot(all_emb, ref_emb.T)
        # normalize by length of query descriptor projected on reference
        norm = numpy.sqrt(numpy.dot(numpy.square(all_emb), ref_mask.T))
        dist /= norm
        dist[numpy.isinf(dist)] = 0.
        dist[numpy.isnan(dist)] = 0.

        # dist[numpy.triu_indices(dist.shape[0], 1)] = numpy.maximum(dist[numpy.triu_indices(dist.shape[0], 1)],
        #                                                            dist.T[numpy.triu_indices(dist.shape[0], 1)])
        # dist[numpy.tril_indices(dist.shape[0], -1)] = 0.
        # dist += dist.T

        return dist
handpose_evaluation.py 文件源码 项目:semi-auto-anno 作者: moberweger 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def saveVideoFrames(self, filename, images):
        """
        Create a video with synthesized images
        :param filename: name of file to save
        :param images: video data
        :return: None
        """

        txt = 'Saving {}'.format(filename)
        pbar = pb.ProgressBar(maxval=images.shape[0], widgets=[txt, pb.Percentage(), pb.Bar()])
        pbar.start()

        height = width = 128

        # Define the codec and create VideoWriter object
        fourcc = cv2.cv.CV_FOURCC(*'DIVX')
        video = cv2.VideoWriter('{}/synth_{}.avi'.format(self.subfolder, filename), fourcc, self.fps, (height, width))
        if not video:
            raise EnvironmentError("Error in creating video writer")

        for i in range(images.shape[0]):
            img = images[i]
            img = cv2.normalize(img, alpha=0, beta=255, norm_type=cv2.cv.CV_MINMAX, dtype=cv2.cv.CV_8UC1)
            img = cv2.cvtColor(img, cv2.cv.CV_GRAY2BGR)
            img = cv2.resize(img, (height, width))
            # write frame
            video.write(img)
            pbar.update(i)

        video.release()
        del video
        cv2.destroyAllWindows()

        pbar.finish()
stereo_matcher_app.py 文件源码 项目:cvcalib 作者: Algomorph 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def process_output(self, disparity):
        cv8uc = cv2.normalize(disparity, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1)
        if self.args.preview:
            cv2.imshow("disparity", cv8uc)
            cv2.waitKey(0)
        cv2.imwrite(os.path.join(self.args.folder, self.args.output), cv8uc)
chessboard.py 文件源码 项目:cvcalib 作者: Algomorph 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def prep_img_save(img, b=5):
    return cv2.normalize(cv2.copyMakeBorder(img, b, b, b, b, cv2.BORDER_CONSTANT, value=0), 0, 255,
                  cv2.NORM_MINMAX).astype(np.uint8)
omr.py 文件源码 项目:omr 作者: rbaron 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def normalize(im):
    return cv2.normalize(im, np.zeros(im.shape), 0, 255, norm_type=cv2.NORM_MINMAX)
dense_optical_flow.py 文件源码 项目:ocular 作者: wolfd 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def calculate_flow(self, frame_a, frame_b):
        previous_frame = cv2.cvtColor(frame_a, cv2.COLOR_BGR2GRAY)
        next_frame = cv2.cvtColor(frame_b, cv2.COLOR_BGR2GRAY)

        flow = cv2.calcOpticalFlowFarneback(
            previous_frame,
            next_frame,
            None,
            0.5, 3, 15, 3, 5, 1.2, 0
        )

        # Change here
        horz = cv2.normalize(flow[..., 0], None, 0, 255, cv2.NORM_MINMAX)
        vert = cv2.normalize(flow[..., 1], None, 0, 255, cv2.NORM_MINMAX)
        horz = horz.astype('uint8')
        vert = vert.astype('uint8')

        # Change here too
        cv2.imshow('Horizontal Component', horz)
        cv2.imshow('Vertical Component', vert)

        k = cv2.waitKey(0) & 0xff
        if k == ord('s'):  # Change here
            cv2.imwrite('opticalflow_horz.pgm', horz)
            cv2.imwrite('opticalflow_vert.pgm', vert)

        cv2.destroyAllWindows()
FaceRecognizer.py 文件源码 项目:Gabor-Filter-Face-Extraction 作者: duycao2506 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def build_filters(self, w, h,num_theta, fi, sigma_x, sigma_y, psi):
        "Get set of filters for GABOR"
        filters = []
        for i in range(num_theta):
            theta = ((i+1)*1.0 / num_theta) * np.pi
            for f_var in fi:
                kernel = self.get_gabor_kernel(w, h,sigma_x, sigma_y, theta, f_var, psi)
                kernel = 2.0*kernel/kernel.sum()
                # kernel = cv2.normalize(kernel, kernel, 1.0, 0, cv2.NORM_L2)
                filters.append(kernel)
        return filters
FaceRecognizer.py 文件源码 项目:Gabor-Filter-Face-Extraction 作者: duycao2506 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def distanceOfFV(self, fv1, fv2):
        "distance of feature vector 1 and feature vector 2"
        normset = []
        for i in range(len(fv1)):
            k = fv1[i]
            p = fv2[i]
            # k = cv2.normalize(fv1[i],k,1.0,0,norm_type=cv2.NORM_L2)
            # p = cv2.normalize(fv2[i],p,1.0,0,norm_type=cv2.NORM_L2)
            normset.append((p-k)**2.0)
        sums = 0
        sums = sum([i.sum() for i in normset])
        return mth.sqrt(sums)/100000


问题


面经


文章

微信
公众号

扫码关注公众号