python类MORPH_CLOSE的实例源码

RegionOfInterest.py 文件源码 项目:DoNotSnap 作者: AVGInnovationLabs 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def roiMask(image, boundaries):
    scale = max([1.0, np.average(np.array(image.shape)[0:2] / 400.0)])
    shape = (int(round(image.shape[1] / scale)), int(round(image.shape[0] / scale)))

    small_color = cv2.resize(image, shape, interpolation=cv2.INTER_LINEAR)

    # reduce details and remove noise for better edge detection
    small_color = cv2.bilateralFilter(small_color, 8, 64, 64)
    small_color = cv2.pyrMeanShiftFiltering(small_color, 8, 64, maxLevel=1)
    small = cv2.cvtColor(small_color, cv2.COLOR_BGR2HSV)

    hue = small[::, ::, 0]
    intensity = cv2.cvtColor(small_color, cv2.COLOR_BGR2GRAY)

    edges = extractEdges(hue, intensity)
    roi = roiFromEdges(edges)
    weight_map = weightMap(hue, intensity, edges, roi)

    _, final_mask = cv2.threshold(roi, 5, 255, cv2.THRESH_BINARY)
    small = cv2.bitwise_and(small, small, mask=final_mask)

    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (4, 4))

    for (lower, upper) in boundaries:
        lower = np.array([lower, 80, 50], dtype="uint8")
        upper = np.array([upper, 255, 255], dtype="uint8")

        # find the colors within the specified boundaries and apply
        # the mask
        mask = cv2.inRange(small, lower, upper)
        mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=3)
        mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)
        final_mask = cv2.bitwise_and(final_mask, mask)

    # blur the mask for better contour extraction
    final_mask = cv2.GaussianBlur(final_mask, (5, 5), 0)
    return (final_mask, weight_map, scale)
image-seg.py 文件源码 项目:cancer_nn 作者: tanmoyopenroot 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def getClosingImage(img):
    kernel = np.ones((35,35),np.uint8)
    closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
    return closing
segmentation.py 文件源码 项目:deep_ocr 作者: JinpengLI 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def check_if_good_boundary(self, boundary, norm_height, norm_width, color_img):
        preprocess_bg_mask = PreprocessBackgroundMask(boundary)
        char_w = norm_width / 20
        remove_noise = PreprocessRemoveNonCharNoise(char_w)

        id_card_img_mask = preprocess_bg_mask.do(color_img)
        id_card_img_mask[0:int(norm_height*0.05),:] = 0
        id_card_img_mask[int(norm_height*0.95): ,:] = 0
        id_card_img_mask[:, 0:int(norm_width*0.05)] = 0
        id_card_img_mask[:, int(norm_width*0.95):] = 0

        remove_noise.do(id_card_img_mask)

#        se1 = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
#        se2 = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2))
#        mask = cv2.morphologyEx(id_card_img_mask, cv2.MORPH_CLOSE, se1)
#        id_card_img_mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, se2)
#  
        ## remove right head profile
        left_half_id_card_img_mask = np.copy(id_card_img_mask)
        left_half_id_card_img_mask[:, norm_width/2:] = 0

        ## Try to find text lines and chars
        horizontal_sum = np.sum(left_half_id_card_img_mask, axis=1)
        line_ranges = extract_peek_ranges_from_array(horizontal_sum)

        return len(line_ranges) >= 5 and len(line_ranges) <= 7
decaptcha.py 文件源码 项目:Simple-deCAPTCHA 作者: BLKStone 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def preprocess(self):
        self.resizeCaptcha()
        # ???
        img_thresh = self.th1(self.img)

        if self.m_debug:
            cv2.imshow("thres", img_thresh)
            cv2.imwrite("debug/threshold.png", img_thresh)

        # ????? ???
        kernel = np.ones((2,2),np.uint8)
        closing = cv2.morphologyEx(img_thresh , cv2.MORPH_CLOSE, kernel)

        if self.m_debug:
            cv2.imshow("close", closing)
            cv2.imwrite("debug/closing.png",closing)

        # ????
        constant = cv2.copyMakeBorder(closing ,50,50,50,50,cv2.BORDER_CONSTANT,value=255)

        # ??????? 0 ? 255??
        # inverse binary image
        # constant = self.inverseColor(constant)

        # ??
        constantSrc = cv2.merge((constant,constant,constant))

        if self.m_debug:
            cv2.imwrite("debug/broader.png",constantSrc)

        self.imgPreprocess = constantSrc.copy()
cv_functions.py 文件源码 项目:R-CNN_LIGHT 作者: YeongHyeon 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def closing(binary_img=None, k_size=2, iterations=1):

    kernel = np.ones((k_size, k_size), np.uint8)

    return cv2.morphologyEx(binary_img, cv2.MORPH_CLOSE, kernel, iterations=iterations) # iteration = loop
denseMatter.py 文件源码 项目:osrmacro 作者: jjvilm 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def find_fairy_ring(self):
        run = 1
        while run:
            play_screen = Screenshot.shoot(6,59,510,355,'hsv')
            # finding white on fairy ring inner circle
            low = np.array([107,92,93])
            high = np.array([113,255,129])

            mask = cv2.inRange(play_screen, low, high)

            kernel = np.ones((10,10), np.uint8)
            dilation = cv2.dilate(mask, kernel, iterations = 1)
            #closing = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)

            #_,contours,_ = cv2,findContours(closing.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            _,contours,_ = cv2.findContours(dilation, cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

            for con in contours:
                print("Area: {}".format(cv2.contourArea(con)))
                if cv2.contourArea(con) > 1.0:
                    (x, y, w, h) = cv2.boundingRect(con)
                    x += self.rs_x
                    y += self.rs_y
                    x1 = x
                    y1 = y
                    x2 = x + w
                    y2 = y + h
                    print("x1:{} y1:{} x2:{} y2:{}".format(x1,y1,x2,y2))
                    #print(cv2.contourArea(con))
                    #M = cv2.moments(con)
                    # finds centroid
                    #x,y = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
                    Mouse.randMove(x1,y1,x2,y2,3)
                    time.sleep(5)
                    if RS.findOptionClick(x1,y1,'cis'):
                        run = 0
                    time.sleep(2)
                    break

        #cv2.imshow('img', mask)
        #cv2.waitKey(000)
detect.py 文件源码 项目:remho 作者: teamresistance 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def morph_close(image, kernel_x=5, kernel_y=1):
        # Attempt to connect adjacent contours by dilating and then eroding
        kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_x, kernel_y))
        image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)
        return image
frame.py 文件源码 项目:SharkCV 作者: hammerhead226 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def close(self, **kwargs):
        if 'shape' not in kwargs:
            kwargs['shape'] = cv2.MORPH_ELLIPSE
        if 'size' not in kwargs:
            kwargs['size'] = 3
        if kwargs['size'] > 0:
            kernel = cv2.getStructuringElement(kwargs['shape'], (kwargs['size'], kwargs['size']))
            self._ndarray = cv2.morphologyEx(self.ndarray, cv2.MORPH_CLOSE, kernel)
            self._contours = None

    # AND this frame with another frame
py_contour_detection.py 文件源码 项目:Vec-Lib 作者: vladan-jovicic 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def detect_contours(self):
        blurred = cv2.GaussianBlur(self.src, (self.kernel_size, self.kernel_size), self.sigma)

        # apply canny detector
        detected_edges = cv2.Canny(blurred, self.threshold, self.threshold * self.ratio, apertureSize=self.apertureSize, L2gradient=True)

        if self.use_dilate:
            kernel = np.ones((3, 3), np.uint8)
            detected_edges = cv2.morphologyEx(detected_edges, cv2.MORPH_CLOSE, kernel)

        self.contours_img, self.simple_contours, self.hierarchy = cv2.findContours(detected_edges.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_KCOS)
        # pdb.gimp_message(self.hierarchy)
        _, self.full_contours, _ = cv2.findContours(detected_edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
birdCLEF_spec.py 文件源码 项目:BirdCLEF2017 作者: kahst 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def hasBird(spec, threshold=16):

    #working copy
    img = spec.copy()

    #STEP 1: Median blur
    img = cv2.medianBlur(img,5)

    #STEP 2: Median threshold
    col_median = np.median(img, axis=0, keepdims=True)
    row_median = np.median(img, axis=1, keepdims=True)

    img[img < row_median * 3] = 0
    img[img < col_median * 4] = 0
    img[img > 0] = 1

    #STEP 3: Remove singles
    img = filter_isolated_cells(img, struct=np.ones((3,3)))

    #STEP 4: Morph Closing
    img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, np.ones((5,5), np.float32))

    #STEP 5: Frequency crop
    img = img[128:-16, :]

    #STEP 6: Count columns and rows with signal
    #(Note: We only use rows with signal as threshold, but columns might come in handy in other scenarios)

    #column has signal?
    col_max = np.max(img, axis=0)
    col_max = ndimage.morphology.binary_dilation(col_max, iterations=2).astype(col_max.dtype)
    cthresh = col_max.sum()

    #row has signal?
    row_max = np.max(img, axis=1)
    row_max = ndimage.morphology.binary_dilation(row_max, iterations=2).astype(row_max.dtype)
    rthresh = row_max.sum()

    #final threshold
    thresh = rthresh

    #DBUGB: show?
    #print thresh
    #cv2.imshow('BIRD?', img)
    #cv2.waitKey(-1)

    #STEP 7: Apply threshold (Default = 16)
    bird = True
    if thresh < threshold:
        bird = False

    return bird, thresh

######################################################

#elist all bird species
main.py 文件源码 项目:Automatic-Plate-Number-Recognition-APNR 作者: kagan94 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def find_contours(img):
    '''
    :param img: (numpy array)
    :return: all possible rectangles (contours)
    '''
    img_blurred = cv2.GaussianBlur(img, (5, 5), 1)  # remove noise
    img_gray = cv2.cvtColor(img_blurred, cv2.COLOR_BGR2GRAY)  # greyscale image
    # cv2.imshow('', img_gray)
    # cv2.waitKey(0)

    # Apply Sobel filter to find the vertical edges
    # Find vertical lines. Car plates have high density of vertical lines
    img_sobel_x = cv2.Sobel(img_gray, cv2.CV_8UC1, dx=1, dy=0, ksize=3, scale=1, delta=0, borderType=cv2.BORDER_DEFAULT)
    # cv2.imshow('img_sobel', img_sobel_x)

    # Apply optimal threshold by using Oslu algorithm
    retval, img_threshold = cv2.threshold(img_sobel_x, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY)
    # cv2.imshow('s', img_threshold)
    # cv2.waitKey(0)

    # TODO: Try to apply AdaptiveThresh
    # Size of a pixel neighborhood that is used to calculate a threshold value for the pixel: 3, 5, 7, and so on.
    # gaus_threshold = cv2.adaptiveThreshold(img_gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 115, 1)
    # cv2.imshow('or', img)
    # cv2.imshow('gaus', gaus_threshold)
    # cv2.waitKey(0)

    # Define a stuctural element as rectangular of size 17x3 (we'll use it during the morphological cleaning)
    element = cv2.getStructuringElement(shape=cv2.MORPH_RECT, ksize=(17, 3))

    # And use this structural element in a close morphological operation
    morph_img_threshold = deepcopy(img_threshold)
    cv2.morphologyEx(src=img_threshold, op=cv2.MORPH_CLOSE, kernel=element, dst=morph_img_threshold)
    # cv2.dilate(img_threshold, kernel=np.ones((1,1), np.uint8), dst=img_threshold, iterations=1)
    # cv2.imshow('Normal Threshold', img_threshold)
    # cv2.imshow('Morphological Threshold based on rect. mask', morph_img_threshold)
    # cv2.waitKey(0)

    # Find contours that contain possible plates (in hierarchical relationship)
    contours, hierarchy = cv2.findContours(morph_img_threshold,
                                           mode=cv2.RETR_EXTERNAL,  # retrieve the external contours
                                           method=cv2.CHAIN_APPROX_NONE)  # all pixels of each contour

    plot_intermediate_steps = False
    if plot_intermediate_steps:
        plot(plt, 321, img, "Original image")
        plot(plt, 322, img_blurred, "Blurred image")
        plot(plt, 323, img_gray, "Grayscale image", cmap='gray')
        plot(plt, 324, img_sobel_x, "Sobel")
        plot(plt, 325, img_threshold, "Threshold image")
        # plot(plt, 326, morph_img_threshold, "After Morphological filter")
        plt.tight_layout()
        plt.show()

    return contours
dushu.py 文件源码 项目:dust_repos 作者: taozhijiang 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def img_tesseract_detect(c_rect, im):
    # ????minAreaRect??????-90~0??????????????????
    # ???????????????????????????????????????
    pts = c_rect.reshape(4, 2)
    rect = np.zeros((4, 2), dtype = "float32")

    # the top-left point has the smallest sum whereas the
    # bottom-right has the largest sum
    s = pts.sum(axis = 1)
    rect[0] = pts[np.argmin(s)]
    rect[3] = pts[np.argmax(s)]

    # compute the difference between the points -- the top-right
    # will have the minumum difference and the bottom-left will
    # have the maximum difference
    diff = np.diff(pts, axis = 1)
    rect[2] = pts[np.argmin(diff)]
    rect[1] = pts[np.argmax(diff)]    

    dst = np.float32([[0,0],[0,100],[200,0],[200,100]])

    M = cv2.getPerspectiveTransform(rect, dst)
    warp = cv2.warpPerspective(im, M, (200, 100))

    img_show_hook("??????", warp) 

    warp = np.array(warp, dtype=np.uint8)
    radius = 10
    selem = disk(radius)

    #????????OTSU????
    local_otsu = rank.otsu(warp, selem)
    l_otsu = np.uint8(warp >= local_otsu)
    l_otsu *= 255

    kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(4, 4))
    l_otsu = cv2.morphologyEx(l_otsu, cv2.MORPH_CLOSE, kernel)    

    img_show_hook("?????OTSU??", l_otsu) 

    print("?????")
    print(pytesseract.image_to_string(Image.fromarray(l_otsu)))

    cv2.waitKey(0)
    return
idcard.py 文件源码 项目:dust_repos 作者: taozhijiang 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def img_tesseract_detect(c_rect, im):
    # ????minAreaRect??????-90~0??????????????????
    # ???????????????????????????????????????
    pts = c_rect.reshape(4, 2)
    rect = np.zeros((4, 2), dtype = "float32")

    # the top-left point has the smallest sum whereas the
    # bottom-right has the largest sum
    s = pts.sum(axis = 1)
    rect[0] = pts[np.argmin(s)]
    rect[3] = pts[np.argmax(s)]

    # compute the difference between the points -- the top-right
    # will have the minumum difference and the bottom-left will
    # have the maximum difference
    diff = np.diff(pts, axis = 1)
    rect[2] = pts[np.argmin(diff)]
    rect[1] = pts[np.argmax(diff)]    

    width = rect[3][0] - rect[0][0]
    height = rect[3][1] - rect[0][1]

    width = (int)((50.0 / height) * width)
    height = 50

    dst = np.float32([[0,0],[0,height],[width,0],[width,height]])

    M = cv2.getPerspectiveTransform(rect, dst)
    warp = cv2.warpPerspective(im, M, (width, height))

    img_show_hook("??????", warp) 

    warp = np.array(warp, dtype=np.uint8)
    radius = 13
    selem = disk(radius)

    #????????OTSU????
    local_otsu = rank.otsu(warp, selem)
    l_otsu = np.uint8(warp >= local_otsu)
    l_otsu *= 255

    kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(2,2))
    l_otsu = cv2.morphologyEx(l_otsu, cv2.MORPH_CLOSE, kernel)    

    img_show_hook("?????OTSU??", l_otsu) 

    print("?????")
    print(pytesseract.image_to_string(Image.fromarray(l_otsu), lang="chi-sim"))

    cv2.waitKey(0)
    return
detect_target.py 文件源码 项目:ROS-Robotics-By-Example 作者: PacktPublishing 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def image_callback(self, msg):

      # convert ROS image to OpenCV image
      try:
         image = self.bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')
      except CvBridgeError as e:
         print(e)

      # create hsv image of scene
      hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

      # find pink objects in the image
      lower_pink = numpy.array([139, 0, 240], numpy.uint8)
      upper_pink = numpy.array([159, 121, 255], numpy.uint8)
      mask = cv2.inRange(hsv, lower_pink, upper_pink)

      # dilate and erode with kernel size 11x11
      cv2.morphologyEx(mask, cv2.MORPH_CLOSE, numpy.ones((11,11))) 

      # find all of the contours in the mask image
      contours, heirarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
      self.contourLength  = len(contours)

      # Check for at least one target found
      if self.contourLength < 1:
         print "No target found"

      else:                       # target found

         ## Loop through all of the contours, and get their areas
         area = [0.0]*len(contours)
         for i in range(self.contourLength):
            area[i] = cv2.contourArea(contours[i])

         #### Target #### the largest "pink" object
         target_image = contours[area.index(max(area))]

         # Using moments find the center of the object and draw a red outline around the object
         target_m = cv2.moments(target_image)
         self.target_u = int(target_m['m10']/target_m['m00'])
         self.target_v = int(target_m['m01']/target_m['m00'])
         points = cv2.minAreaRect(target_image)
         box = cv2.cv.BoxPoints(points)
         box = numpy.int0(box)
         cv2.drawContours(image, [box], 0, (0, 0, 255), 2)
         rospy.loginfo("Center of target is x at %d and y at %d", int(self.target_u), int(self.target_v))

         self.target_found = True               # set flag for depth_callback processing

         # show image with target outlined with a red rectangle
         cv2.imshow ("Target", image)
         cv2.waitKey(3)

   # This callback function handles processing Kinect depth image, looking for the depth value 
   #   at the location of the center of the pink target.
detect_crazyflie.py 文件源码 项目:ROS-Robotics-By-Example 作者: PacktPublishing 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def image_callback(self, msg):

      # convert ROS image to OpenCV image
      try:
         image = self.bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')
      except CvBridgeError as e:
         print(e)

      # create hsv image of scene
      hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

      # find green objects in the image
      lower_green = numpy.array([50, 50, 177], numpy.uint8)      # fluffy green ball
      upper_green = numpy.array([84, 150, 255], numpy.uint8)
      mask = cv2.inRange(hsv, lower_green, upper_green)

      # dilate and erode with kernel size 11x11
      cv2.morphologyEx(mask, cv2.MORPH_CLOSE, numpy.ones((11,11))) 

      # find all of the contours in the mask image
      contours, heirarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
      self.contourLength  = len(contours)

      # Check for at least one ball found
      if self.contourLength < 1:
         print "No objects found"
         sys.exit("No objects found")        # if no Crazyflie in image, exit process

      ## Loop through all of the contours, and get their areas
      area = [0.0]*len(contours)
      for i in range(self.contourLength):
         area[i] = cv2.contourArea(contours[i])

      #### Ball #### the largest "green" object
      ball_image = contours[area.index(max(area))]

      # Find the circumcircle of the green ball and draw a blue outline around it
      (self.cf_u,self.cf_v),radius = cv2.minEnclosingCircle(ball_image)
      ball_center = (int(self.cf_u),int(self.cf_v))
      ball_radius = int(radius)
      cv2.circle(image, ball_center, ball_radius, (255,0,0), 2)

      # show image with green ball outlined with a blue circle
      cv2.imshow ("KinectV2", image)
      cv2.waitKey(3)


   # This callback function handles processing Kinect depth image, looking for the depth value 
   #   at the location of the center of the green ball on top of Crazyflie.
RS.py 文件源码 项目:osrmacro 作者: jjvilm 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def find_bank_booth():
    """Finds bank booth and clicks it.  Returns True if found, else False"""

    bank_booth_glass_window = ([0,72,149],[179,82,163])
    # take screenshot of playing area
    play_area_screen,psx,psy = getPlayingScreen()

    # find glasswindow for bankbooth
    mask = cv2.inRange(play_area_screen, np.array(bank_booth_glass_window[0]), np.array(bank_booth_glass_window[1]))

    # gets RS window's position
    rsx,rsy = position()

    psx += rsx
    psy += rsy

    kernel = np.ones((3,3), np.uint8)
    closing = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)


    #cv2.imshow('img', closing)
    #cv2.waitKey(0)

    # Finds contours
    _,contours,_ = cv2.findContours(closing.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    try:
        for con in contours:
            if cv2.contourArea(con) > 10:
                #print(cv2.contourArea(con))
                M = cv2.moments(con)
                # finds centroid
                cx,cy = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
                psx += cx
                psy += cy
                # adds randomness to coords
                psx += random.randint(-7,7)
                psy += random.randint(-7,7)

                #move click
                Mouse.moveClick(psx,psy,1)
                RandTime.randTime(0,0,0,0,9,9)
                return 1
    except Exception as e:
        print("Bank NOT found!\nMove camera around!")
    # returns False if bank not found
    return 0
motherloader.py 文件源码 项目:osrmacro 作者: jjvilm 项目源码 文件源码 阅读 14 收藏 0 点赞 0 评论 0
def find_motherload_mine():
    """Returns mine's location x, and y coords"""
    play_img,psx,psy = RS.getPlayingScreen()


    mines = {
        0: (np.array([0,0,153]), np.array([8,25,209])),
        1: (np.array([0,0,72]), np.array([2,25,144]))
    }

    for mine_key  in mines.keys():
        #print("Mine: {}".format(mine_key))
        lower = mines[mine_key][0]
        upper = mines[mine_key][1]

        mask = cv2.inRange(play_img, lower, upper)

        kernel = np.ones((10,10), np.uint8)

        closing  =  cv2.morphologyEx(mask.copy(), cv2.MORPH_CLOSE, kernel)


        #cv2.imshow('mask', mask)
        #cv2.imshow('closing', closing)
        #cv2.waitKey(0)

        _, contours, _ = cv2.findContours(mask.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        if contours[0].any():
            pass
        else:
            print('didnt find contours')
            break

        for con in contours[::-1]:
            M = cv2.moments(con)
            if cv2.contourArea(con) > 20:
                # Shows the mask

                #centroid from img moments
                cx = int(M['m10']/M['m00'])
                cy = int(M['m01']/M['m00'])

                #combine psx,psy coords with centroid coords from above
                cx += psx
                cy += psy

                #print("Area:",cv2.contourArea(con))
                #print(con[0][0][0],con[0][0][1])
                Mouse.moveClick(cx,cy, 1)
                return cx,cy
            else:
                continue
detect_target.py 文件源码 项目:ROS-Robotics-by-Example 作者: FairchildC 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def image_callback(self, msg):

      # convert ROS image to OpenCV image
      try:
         image = self.bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')
      except CvBridgeError as e:
         print(e)

      # create hsv image of scene
      hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

      # find pink objects in the image
      lower_pink = numpy.array([139, 0, 240], numpy.uint8)
      upper_pink = numpy.array([159, 121, 255], numpy.uint8)
      mask = cv2.inRange(hsv, lower_pink, upper_pink)

      # dilate and erode with kernel size 11x11
      cv2.morphologyEx(mask, cv2.MORPH_CLOSE, numpy.ones((11,11))) 

      # find all of the contours in the mask image
      contours, heirarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
      self.contourLength  = len(contours)

      # Check for at least one target found
      if self.contourLength < 1:
         print "No target found"

      else:                       # target found

         ## Loop through all of the contours, and get their areas
         area = [0.0]*len(contours)
         for i in range(self.contourLength):
            area[i] = cv2.contourArea(contours[i])

         #### Target #### the largest "pink" object
         target_image = contours[area.index(max(area))]

         # Using moments find the center of the object and draw a red outline around the object
         target_m = cv2.moments(target_image)
         self.target_u = int(target_m['m10']/target_m['m00'])
         self.target_v = int(target_m['m01']/target_m['m00'])
         points = cv2.minAreaRect(target_image)
         box = cv2.cv.BoxPoints(points)
         box = numpy.int0(box)
         cv2.drawContours(image, [box], 0, (0, 0, 255), 2)
         rospy.loginfo("Center of target is x at %d and y at %d", int(self.target_u), int(self.target_v))

         self.target_found = True               # set flag for depth_callback processing

         # show image with target outlined with a red rectangle
         cv2.imshow ("Target", image)
         cv2.waitKey(3)

   # This callback function handles processing Kinect depth image, looking for the depth value 
   #   at the location of the center of the pink target.
detect_crazyflie.py 文件源码 项目:ROS-Robotics-by-Example 作者: FairchildC 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def image_callback(self, msg):

      # convert ROS image to OpenCV image
      try:
         image = self.bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')
      except CvBridgeError as e:
         print(e)

      # create hsv image of scene
      hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

      # find green objects in the image
      lower_green = numpy.array([50, 50, 177], numpy.uint8)      # fluffy green ball
      upper_green = numpy.array([84, 150, 255], numpy.uint8)
      mask = cv2.inRange(hsv, lower_green, upper_green)

      # dilate and erode with kernel size 11x11
      cv2.morphologyEx(mask, cv2.MORPH_CLOSE, numpy.ones((11,11))) 

      # find all of the contours in the mask image
      contours, heirarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
      self.contourLength  = len(contours)

      # Check for at least one ball found
      if self.contourLength < 1:
         print "No objects found"
         sys.exit("No objects found")        # if no Crazyflie in image, exit process

      ## Loop through all of the contours, and get their areas
      area = [0.0]*len(contours)
      for i in range(self.contourLength):
         area[i] = cv2.contourArea(contours[i])

      #### Ball #### the largest "green" object
      ball_image = contours[area.index(max(area))]

      # Find the circumcircle of the green ball and draw a blue outline around it
      (self.cf_u,self.cf_v),radius = cv2.minEnclosingCircle(ball_image)
      ball_center = (int(self.cf_u),int(self.cf_v))
      ball_radius = int(radius)
      cv2.circle(image, ball_center, ball_radius, (255,0,0), 2)

      # show image with green ball outlined with a blue circle
      cv2.imshow ("KinectV2", image)
      cv2.waitKey(3)


   # This callback function handles processing Kinect depth image, looking for the depth value 
   #   at the location of the center of the green ball on top of Crazyflie.
server.py 文件源码 项目:indices 作者: shekharshank 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def detect_barcode(imageval):


    # load the image and convert it to grayscale

    file_bytes = np.asarray(bytearray(imageval), dtype=np.uint8)
        img_data_ndarray = cv2.imdecode(file_bytes, cv2.CV_LOAD_IMAGE_UNCHANGED)
    gray = cv2.cvtColor(img_data_ndarray, cv2.COLOR_BGR2GRAY)

    # compute the Scharr gradient magnitude representation of the images
    # in both the x and y direction
    gradX = cv2.Sobel(gray, ddepth = cv2.cv.CV_32F, dx = 1, dy = 0, ksize = -1)
    gradY = cv2.Sobel(gray, ddepth = cv2.cv.CV_32F, dx = 0, dy = 1, ksize = -1)

    # subtract the y-gradient from the x-gradient
    gradient = cv2.subtract(gradX, gradY)
    gradient = cv2.convertScaleAbs(gradient)

    # blur and threshold the image
    blurred = cv2.blur(gradient, (9, 9))
    (_, thresh) = cv2.threshold(blurred, 225, 255, cv2.THRESH_BINARY)

    # construct a closing kernel and apply it to the thresholded image
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (21, 7))
    closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)

    # perform a series of erosions and dilations
    closed = cv2.erode(closed, None, iterations = 4)
    closed = cv2.dilate(closed, None, iterations = 4)

    # find the contours in the thresholded image, then sort the contours
    # by their area, keeping only the largest one
    (cnts, _) = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL,
        cv2.CHAIN_APPROX_SIMPLE)
    c = sorted(cnts, key = cv2.contourArea, reverse = True)[0]

    # compute the rotated bounding box of the largest contour
    rect = cv2.minAreaRect(c)
    box = np.int0(cv2.cv.BoxPoints(rect))

    # draw a bounding box arounded the detected barcode and display the
    # image
    cv2.drawContours(img_data_ndarray, [box], -1, (0, 255, 0), 3)
    # cv2.imshow("Image", image)
    #cv2.imwrite("uploads/output-"+ datetime.datetime.now().strftime("%Y-%m-%d-%H:%M:%S")  +".jpg",image)
    # cv2.waitKey(0)

    #outputfile = "uploads/output-" + time.strftime("%H:%M:%S") + ".jpg"
    outputfile = "uploads/output.jpg"

    cv2.imwrite(outputfile,img_data_ndarray)


问题


面经


文章

微信
公众号

扫码关注公众号