python类approxPolyDP()的实例源码

tslsr.py 文件源码 项目:Speedy-TSLSR 作者: talhaHavadar 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def __bound_contours(roi):
    """
        returns modified roi(non-destructive) and rectangles that founded by the algorithm.
        @roi region of interest to find contours
        @return (roi, rects)
    """

    roi_copy = roi.copy()
    roi_hsv = cv2.cvtColor(roi, cv2.COLOR_RGB2HSV)
    # filter black color
    mask1 = cv2.inRange(roi_hsv, np.array([0, 0, 0]), np.array([180, 255, 125]))
    mask1 = cv2.morphologyEx(mask1, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
    mask1 = cv2.Canny(mask1, 100, 300)
    mask1 = cv2.GaussianBlur(mask1, (1, 1), 0)
    mask1 = cv2.Canny(mask1, 100, 300)

    # mask1 = cv2.morphologyEx(mask1, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)))

    # Find contours for detected portion of the image
    im2, cnts, hierarchy = cv2.findContours(mask1.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5] # get largest five contour area
    rects = []
    for c in cnts:
        peri = cv2.arcLength(c, True)
        approx = cv2.approxPolyDP(c, 0.02 * peri, True)
        x, y, w, h = cv2.boundingRect(approx)
        if h >= 15:
            # if height is enough
            # create rectangle for bounding
            rect = (x, y, w, h)
            rects.append(rect)
            cv2.rectangle(roi_copy, (x, y), (x+w, y+h), (0, 255, 0), 1);

    return (roi_copy, rects)
squares.py 文件源码 项目:PaperHelper 作者: EdgarNg1024 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def find_squares(img):
    img = cv2.GaussianBlur(img, (5, 5), 0)
    squares = []
    for gray in cv2.split(img):
        for thrs in xrange(0, 255, 26):
            if thrs == 0:
                bin = cv2.Canny(gray, 0, 50, apertureSize=5)
                bin = cv2.dilate(bin, None)
            else:
                retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
            bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
            for cnt in contours:
                cnt_len = cv2.arcLength(cnt, True)
                cnt = cv2.approxPolyDP(cnt, 0.02 * cnt_len, True)
                if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
                    cnt = cnt.reshape(-1, 2)
                    max_cos = np.max([angle_cos(cnt[i], cnt[(i + 1) % 4], cnt[(i + 2) % 4]) for i in xrange(4)])
                    if max_cos < 0.1:
                        squares.append(cnt)
    return squares
triangle-detect.py 文件源码 项目:illumeme 作者: josmcg 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def find_triangles(filename):
    FIRST = 0
    RED = (0, 0, 255)
    THICKNESS = 3
    copy = img = cv2.imread(filename)
    grey_img = cv2.imread(file_name, cv2.IMREAD_GRAYSCALE)
    ret, thresh = cv2.threshold(grey_img, 127, 255, 1)
    contours, h = cv2.findContours(thresh, 1, 2)
    largest = None
    for contour in countours:
        approx = cv2.approxPolyDP(contour,0.01*cv2.arcLength(contour,True),True)
        if len(approx) == 3:
            #triangle found
            if largest is None or cv2.contourArea(contour) > cv2.contourArea(largest):
                largest = contour

    #write file
    cv2.drawContours(copy, [largest], FIRST, RED, THICKNESS)
    cv2.imwrite(filename +"_result", copy)
border_removal.py 文件源码 项目:idmatch 作者: maddevsio 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def remove_borders(image):
    ratio = image.shape[0] / 500.0
    orig = image.copy()
    image = resize(image, height=500)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    gray = cv2.GaussianBlur(gray, (5, 5), 0)
    edged = cv2.Canny(gray, 75, 200)
    _, cnts, _ = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    cv2.imshow('edged', edged)
    cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
    screenCnt = None
    for c in cnts:
        peri = cv2.arcLength(c, True)
        approx = cv2.approxPolyDP(c, 0.02 * peri, True)
        print(len(approx) == 4)
        if len(approx) == 4:
            screenCnt = approx
            break
    cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)
    if screenCnt is not None and len(screenCnt) > 0:
        return four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)
    return orig
dushu.py 文件源码 项目:dust_repos 作者: taozhijiang 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def img_contour_select(ctrs, im):
    # ????????????
    cand_rect = []
    for item in ctrs:
        epsilon = 0.02*cv2.arcLength(item, True)
        approx = cv2.approxPolyDP(item, epsilon, True)  
        if len(approx) <= 8:
            rect = cv2.minAreaRect(item)
            if rect[1][0] < 20 or rect[1][1] < 20:
                continue
            if rect[1][0] > 150 or rect[1][1] > 150:
                continue        
            #ratio = (rect[1][1]+0.00001) / rect[1][0]
            #if ratio > 1 or ratio < 0.9:
            #    continue
            box = cv2.boxPoints(rect)
            box_d = np.int0(box)
            cv2.drawContours(im, [box_d], 0, (0,255,0), 3)
            cand_rect.append(box)
    img_show_hook("????", im)   
    return cand_rect
sudoku.py 文件源码 项目:pyku 作者: dubvulture 项目源码 文件源码 阅读 58 收藏 0 点赞 0 评论 0
def extract_corners(self, image):
        """
        Find the 4 corners of a binary image
        :param image: binary image
        :return: 4 main vertices or None
        """
        cnts, _ = cv2.findContours(image.copy(),
                                   cv2.RETR_EXTERNAL,
                                   cv2.CHAIN_APPROX_SIMPLE)[-2:]
        cnt = cnts[0]
        _, _, h, w = cv2.boundingRect(cnt)
        epsilon = min(h, w) * 0.5
        vertices = cv2.approxPolyDP(cnt, epsilon, True)
        vertices = cv2.convexHull(vertices, clockwise=True)
        vertices = self.correct_vertices(vertices)

        return vertices
__init__.py 文件源码 项目:beryl 作者: DanielJDufour 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def find_squares(img):
    img = cv2.GaussianBlur(img, (5, 5), 0)
    squares = []
    for gray in cv2.split(img):
        for thrs in xrange(0, 255, 26):
            if thrs == 0:
                bin = cv2.Canny(gray, 0, 50, apertureSize=5)
                bin = cv2.dilate(bin, None)
            else:
                _retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
            contours, _hierarchy = find_contours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
            for cnt in contours:
                x, y, w, h = cv2.boundingRect(cnt)
                cnt_len = cv2.arcLength(cnt, True)
                cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
                area = cv2.contourArea(cnt)
                if len(cnt) == 4 and 20 < area < 1000 and cv2.isContourConvex(cnt):
                    cnt = cnt.reshape(-1, 2)
                    max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
                    if max_cos < 0.1:
                        if (1 - (float(w) / float(h)) <= 0.07 and 1 - (float(h) / float(w)) <= 0.07):
                            squares.append(cnt)
    return squares
cut.py 文件源码 项目:yonkoma2data 作者: esuji5 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def homography(self, img, outdir_name=''):
        orig = img
        # 2??????
        gray = cv2.cvtColor(orig, cv2.COLOR_BGR2GRAY)
        gauss = cv2.GaussianBlur(gray, (5, 5), 0)
        canny = cv2.Canny(gauss, 50, 150)

        # 2??????????
        contours = cv2.findContours(canny, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)[1]
        # ???????????
        contours.sort(key=cv2.contourArea, reverse=True)

        if len(contours) > 0:
            arclen = cv2.arcLength(contours[0], True)
            # ???????????
            approx = cv2.approxPolyDP(contours[0], 0.01 * arclen, True)
            # warp = approx.copy()
            if len(approx) >= 4:
                self.last_approx = approx.copy()
            elif self.last_approx is not None:
                approx = self.last_approx
        else:
            approx = self.last_approx
        rect = self.get_rect_by_points(approx)
        # warped = self.transform_by4(orig, warp[:, 0, :])
        return orig[rect[0]:rect[1], rect[2]:rect[3]]
piwall.py 文件源码 项目:piwall-cvtools 作者: infinnovation 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def find_squares(img, cos_limit = 0.1):
    print('search for squares with threshold %f' % cos_limit)
    img = cv2.GaussianBlur(img, (5, 5), 0)
    squares = []
    for gray in cv2.split(img):
        for thrs in xrange(0, 255, 26):
            if thrs == 0:
                bin = cv2.Canny(gray, 0, 50, apertureSize=5)
                bin = cv2.dilate(bin, None)
            else:
                retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
            bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
            for cnt in contours:
                cnt_len = cv2.arcLength(cnt, True)
                cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
                if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
                    cnt = cnt.reshape(-1, 2)
                    max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
                    if max_cos < cos_limit :
                        squares.append(cnt)
                    else:
                        #print('dropped a square with max_cos %f' % max_cos)
                        pass
    return squares

###
### Version V2.  Collect meta-data along the way,  with commentary added.
###
find_bibs.py 文件源码 项目:bib-tagger 作者: KateRita 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_rectangles(contours):
  rectangles = []
  for contour in contours:
    epsilon = 0.04*cv2.arcLength(contour,True)
    hull = cv2.convexHull(contour)
    approx = cv2.approxPolyDP(hull,epsilon,True)
    if (len(approx) == 4 and cv2.isContourConvex(approx)):
        rectangles.append(approx)

  return rectangles
image_processor.py 文件源码 项目:2017-robot 作者: frc1418 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def find_contours(self, img):

        thresh_img = self.threshold(img)

        _, contours, _ = cv2.findContours(thresh_img, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
        result = []
        for cnt in contours:
            approx = cv2.approxPolyDP(cnt, 0.01*cv2.arcLength(cnt, True), True)

            if self.draw_approx:
                cv2.drawContours(self.out, [approx], -1, self.BLUE, 2, lineType=8)

            if len(approx) > 3 and len(approx) < 15:
                _, _, w, h = cv2.boundingRect(approx)
                if h > self.min_height and w > self.min_width:
                        hull = cv2.convexHull(cnt)
                        approx2 = cv2.approxPolyDP(hull,0.01*cv2.arcLength(hull,True),True)

                        if self.draw_approx2:
                            cv2.drawContours(self.out, [approx2], -1, self.GREEN, 2, lineType=8)

                        result.append(approx2)
        return result
__init__.py 文件源码 项目:rubiks-cube-tracker 作者: dwalton76 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, rubiks_parent, index, contour, heirarchy):
        self.rubiks_parent = rubiks_parent
        self.index = index
        self.contour = contour
        self.heirarchy = heirarchy
        peri = cv2.arcLength(contour, True)
        self.approx = cv2.approxPolyDP(contour, 0.1 * peri, True)
        self.area = cv2.contourArea(contour)
        self.corners = len(self.approx)
        self.width = None

        # compute the center of the contour
        M = cv2.moments(contour)

        if M["m00"]:
            self.cX = int(M["m10"] / M["m00"])
            self.cY = int(M["m01"] / M["m00"])
        else:
            self.cX = None
            self.cY = None
gesture.py 文件源码 项目:spockpy 作者: achillesrasquinha 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _get_tip_position(array, contour, verbose = False):
    approx_contour = cv2.approxPolyDP(contour, 0.08 * cv2.arcLength(contour, True), True)
    convex_points  = cv2.convexHull(approx_contour, returnPoints = True)

    cx, cy     = 999, 999

    for point in convex_points:
        cur_cx, cur_cy = point[0][0], point[0][1]

        if verbose:
            cv2.circle(array, (cur_cx, cur_cy), 4, _COLOR_GREEN,4)

        if (cur_cy < cy):
            cx, cy = cur_cx, cur_cy

    (screen_x, screen_y) = pyautogui.size()

    height, width, _ = array.shape
    x = _round_int((float(cx))/(width-0)*(screen_x+1))
    y = _round_int((float(cy))/(height-0)*(screen_y+1))
    return (array, (x, y))
idcard.py 文件源码 项目:dust_repos 作者: taozhijiang 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def img_contour_select(ctrs, im):
    # ????????????
    cand_rect = []
    for item in ctrs:
        epsilon = 0.02*cv2.arcLength(item, True)
        approx = cv2.approxPolyDP(item, epsilon, True)  
        if len(approx) <= 8:
            rect = cv2.minAreaRect(item)
            #????????
            if rect[2] < -10 and rect[2] > -80:
                continue
            if rect[1][0] < 10 or rect[1][1] < 10:
                continue
            #ratio = (rect[1][1]+0.00001) / rect[1][0]
            #if ratio > 1 or ratio < 0.9:
            #    continue
            box = cv2.boxPoints(rect)
            box_d = np.int0(box)
            cv2.drawContours(im, [box_d], 0, (0,255,0), 3)
            cand_rect.append(box)
    img_show_hook("????", im)   
    return cand_rect
vision_processing.py 文件源码 项目:Stronghold-2016-Vision 作者: team4099 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_corners_from_contours(contours, corner_amount=4):
    """
    Finds four corners from a list of points on the goal
    epsilon - the minimum side length of the polygon generated by the corners

    Parameters:
        :param: `contours` - a numpy array of points (opencv contour) of the
                             points to get corners from
        :param: `corner_amount` - the number of corners to find
    """
    coefficient = .05
    while True:
        # print(contours)
        epsilon = coefficient * cv2.arcLength(contours, True)
        # epsilon =
        # print("epsilon:", epsilon)
        poly_approx = cv2.approxPolyDP(contours, epsilon, True)
        hull = cv2.convexHull(poly_approx)
        if len(hull) == corner_amount:
            return hull
        else:
            if len(hull) > corner_amount:
                coefficient += .01
            else:
                coefficient -= .01
scan.py 文件源码 项目:card-scanner 作者: RFVenter 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def get_contours(image, polydb=0.1, contour_range=7):
    # find the contours in the edged image, keeping only the largest ones, and initialize the screen contour
    contours = _findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    cnts = sorted(contours, key = cv2.contourArea, reverse = True)[:contour_range]
    # loop over the contours
    screenCnt = None
    for c in cnts:
        # approximate the contour
        peri = cv2.arcLength(c, True) #finds the Contour Perimeter
        approx = cv2.approxPolyDP(c, polydb * peri, True)
        # if our approximated contour has four points, then we can assume that we have found our screen
        if len(approx) == 4:
            screenCnt = approx
            break
    if screenCnt is None:
        raise EdgeNotFound()
    # sometimes the algorythm finds a strange non-convex shape. The shape conforms to the card but its not complete, so then just complete the shape into a convex form
    if not cv2.isContourConvex(screenCnt):
        screenCnt = cv2.convexHull(screenCnt)
        x,y,w,h = cv2.boundingRect(screenCnt)
        screenCnt = numpy.array([[[x, y]], [[x+w, y]], [[x+w, y+h]], [[x, y+h]]])
    return screenCnt
10-PiStorms_icontracker.py 文件源码 项目:PiStorms 作者: mindsensors 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def findSquare( self,frame ):
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        blurred = cv2.GaussianBlur(gray, (7, 7), 0)
        edged = cv2.Canny(blurred, 60, 60)
        # find contours in the edge map
        (cnts, _) = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        # loop over our contours to find hexagon
        cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:50]
        screenCnt = None
        for c in cnts:
            # approximate the contour
            peri = cv2.arcLength(c, True)
            approx = cv2.approxPolyDP(c, 0.004 * peri, True)
            # if our approximated contour has four points, then
            # we can assume that we have found our squeare

            if len(approx) >= 4:
                screenCnt = approx
                x,y,w,h = cv2.boundingRect(c)
                cv2.drawContours(image, [approx], -1, (0, 0, 255), 1)
                #cv2.imshow("Screen", image)
                #create the mask and remove rest of the background
                mask = np.zeros(image.shape[:2], dtype = "uint8")
                cv2.drawContours(mask, [screenCnt], -1, 255, -1)
                masked = cv2.bitwise_and(image, image, mask = mask)
                #cv2.imshow("Masked",masked  )
                #crop the masked image to to be compared to referance image
                cropped = masked[y:y+h,x:x+w]
                #scale the image so it is fixed size as referance image
                cropped = cv2.resize(cropped, (200,200), interpolation =cv2.INTER_AREA)

                return cropped
sudoku_steps.py 文件源码 项目:pyku 作者: dubvulture 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def extract_corners(self, image):
        """
        Find the 4 corners of a binary image
        :param image: binary image
        :return: 4 main vertices or None
        """
        cnts, _ = cv2.findContours(image.copy(),
                                   cv2.RETR_EXTERNAL,
                                   cv2.CHAIN_APPROX_SIMPLE)[-2:]
        cnt = cnts[0]
        _, _, h, w = cv2.boundingRect(cnt)
        epsilon = min(h, w) * 0.5
        o_vertices = cv2.approxPolyDP(cnt, epsilon, True)
        vertices = cv2.convexHull(o_vertices, clockwise=True)
        vertices = self.correct_vertices(vertices)

        if self.debug:
            temp = cv2.cvtColor(image.copy(), cv2.COLOR_GRAY2BGR)
            cv2.drawContours(temp, cnts, -1, (0, 255, 0), 10)
            cv2.drawContours(temp, o_vertices, -1, (255, 0, 0), 30)
            cv2.drawContours(temp, vertices, -1, (0, 0, 255), 20)
            self.save2image(temp)

        return vertices
logoSet.py 文件源码 项目:vehicle_brand_classification_CNN 作者: nanoc812 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def imgSeg_contour(img, b,g,r, per):
    lower = np.array([0, 0, 0])
    upper = np.array([b,g,r])
    shapeMask = cv2.inRange(img, lower, upper)

    #http://stackoverflow.com/questions/27746089/python-computer-vision-contours-too-many-values-to-unpack
    _, cnts, hierarchy = cv2.findContours(shapeMask.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:4]

    for c in cnts:
        peri = cv2.arcLength(c, True)
        approx = cv2.approxPolyDP(c, per * peri, True) ### 0.04 ###
        if (len(approx) >= 4) and (len(approx) < 6):
            break
    return approx
vision.py 文件源码 项目:Vision2016 作者: Team3309 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_corners(contour):
    """
    Given a contour that should have a rectangular convex hull, produce a sorted list of corners for the bounding rectangle
    :param contour:
    :return:
    """
    hull = cv2.convexHull(contour)
    hull_poly = cv2.approxPolyDP(hull, 0.05 * cv2.arcLength(hull, True), True)
    return sort_corners(hull_poly)
utils.py 文件源码 项目:kaggle-dstl-satellite-imagery-feature-detection 作者: u1234x1234 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def polygonize_cv(mask, epsilon=1., min_area=10.):
    contours, hierarchy = cv2.findContours(mask, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_KCOS)
    # create approximate contours to have reasonable submission size
    approx_contours = [cv2.approxPolyDP(cnt, epsilon, True)
                       for cnt in contours]
    approx_contours = contours
    if not contours:
        return MultiPolygon()
    # now messy stuff to associate parent and child contours
    cnt_children = defaultdict(list)
    child_contours = set()
    assert hierarchy.shape[0] == 1
    # http://docs.opencv.org/3.1.0/d9/d8b/tutorial_py_contours_hierarchy.html
    for idx, (_, _, _, parent_idx) in enumerate(hierarchy[0]):
        if parent_idx != -1:
            child_contours.add(idx)
            cnt_children[parent_idx].append(approx_contours[idx])
    # create actual polygons filtering by area (removes artifacts)
    all_polygons = []
    for idx, cnt in enumerate(approx_contours):
        if idx not in child_contours and cv2.contourArea(cnt) >= min_area:
            assert cnt.shape[1] == 1
            poly = Polygon(
                shell=cnt[:, 0, :],
                holes=[c[:, 0, :] for c in cnt_children.get(idx, [])
                       if cv2.contourArea(c) >= min_area])
            all_polygons.append(poly)
    # approximating polygons might have created invalid ones, fix them
    all_polygons = MultiPolygon(all_polygons)
    if not all_polygons.is_valid:
        all_polygons = all_polygons.buffer(0)
        # Sometimes buffer() converts a simple Multipolygon to just a Polygon,
        # need to keep it a Multi throughout
        if all_polygons.type == 'Polygon':
            all_polygons = MultiPolygon([all_polygons])
    return all_polygons
piwall.py 文件源码 项目:piwall-cvtools 作者: infinnovation 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def cannyThresholding(self, contour_retrieval_mode = cv2.RETR_LIST):
        '''
        contour_retrieval_mode is passed through as second argument to cv2.findContours
        '''

        # Attempt to match edges found in blue, green or red channels : collect all
        channel = 0
        for gray in cv2.split(self.img):
            channel += 1
            print('channel %d ' % channel)
            title = self.tgen.next('channel-%d' % channel)
            if self.show: ImageViewer(gray).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
            found = {}
            for thrs in xrange(0, 255, 26):
                print('Using threshold %d' % thrs)
                if thrs == 0:
                    print('First step')
                    bin = cv2.Canny(gray, 0, 50, apertureSize=5)
                    title = self.tgen.next('canny-%d' % channel)
                    if self.show: ImageViewer(bin).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
                    bin = cv2.dilate(bin, None)
                    title = self.tgen.next('canny-dilate-%d' % channel)
                    if self.show: ImageViewer(bin).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
                else:
                    retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
                    title = self.tgen.next('channel-%d-threshold-%d' % (channel, thrs))
                    if self.show: ImageViewer(bin).show(window='Next threshold (n to continue)', destroy = self.destroy, info = self.info, thumbnailfn = title)
                bin, contours, hierarchy = cv2.findContours(bin, contour_retrieval_mode, cv2.CHAIN_APPROX_SIMPLE)
                title = self.tgen.next('channel-%d-threshold-%d-contours' % (channel, thrs))
                if self.show: ImageViewer(bin).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
                if contour_retrieval_mode == cv2.RETR_LIST or contour_retrieval_mode == cv2.RETR_EXTERNAL:
                    filteredContours = contours
                else:
                    filteredContours = []
                    h = hierarchy[0]
                    for component in zip(contours, h):
                        currentContour = component[0]
                        currentHierarchy = component[1]
                        if currentHierarchy[3] < 0:
                            # Found the outermost parent component
                            filteredContours.append(currentContour)
                    print('Contours filtered.   Input %d  Output %d' % (len(contours), len(filteredContours)))
                    time.sleep(5)
                for cnt in filteredContours:
                    cnt_len = cv2.arcLength(cnt, True)
                    cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
                    cnt_len = len(cnt)
                    cnt_area = cv2.contourArea(cnt)
                    cnt_isConvex = cv2.isContourConvex(cnt)
                    if cnt_len == 4 and (cnt_area > self.area_min and cnt_area < self.area_max)  and cnt_isConvex:
                        cnt = cnt.reshape(-1, 2)
                        max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
                        if max_cos < self.cos_limit :
                            sq = Square(cnt, cnt_area, cnt_isConvex, max_cos)
                            self.squares.append(sq)
                        else:
                            #print('dropped a square with max_cos %f' % max_cos)
                            pass
                found[thrs] = len(self.squares)
                print('Found %d quadrilaterals with threshold %d' % (len(self.squares), thrs))
preprocessing.py 文件源码 项目:pycolor_detection 作者: parth1993 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def findSignificantContours(img, sobel_8u, sobel):
    image, contours, heirarchy = cv2.findContours(sobel_8u, \
                                                  cv2.RETR_EXTERNAL, \
                                                  cv2.CHAIN_APPROX_SIMPLE)
    mask = np.ones(image.shape[:2], dtype="uint8") * 255

    level1 = []
    for i, tupl in enumerate(heirarchy[0]):

        if tupl[3] == -1:
            tupl = np.insert(tupl, 0, [i])
            level1.append(tupl)
    significant = []
    tooSmall = sobel_8u.size * 10 / 100
    for tupl in level1:
        contour = contours[tupl[0]];
        area = cv2.contourArea(contour)
        if area > tooSmall:
            cv2.drawContours(mask, \
                             [contour], 0, (0, 255, 0), \
                             2, cv2.LINE_AA, maxLevel=1)
            significant.append([contour, area])
    significant.sort(key=lambda x: x[1])
    significant = [x[0] for x in significant];
    peri = cv2.arcLength(contour, True)
    approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
    mask = sobel.copy()
    mask[mask > 0] = 0
    cv2.fillPoly(mask, significant, 255, 0)
    mask = np.logical_not(mask)
    img[mask] = 0;

    return img
navigation.py 文件源码 项目:srcsim2017 作者: ZarjRobotics 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def find_contours(mask, smooth_factor=0.005):
        """ Find the contours in a given mask """
        border = 5
        # Canny detection breaks down with the edge of the image
        my_mask = cv2.copyMakeBorder(mask, border, border, border, border,
                                     cv2.BORDER_CONSTANT, value=(0, 0, 0))

        my_mask = cv2.cvtColor(my_mask, cv2.COLOR_BGR2GRAY)

        if is_cv2():
            contours, _ = cv2.findContours(my_mask, cv2.RETR_EXTERNAL,
                                           cv2.CHAIN_APPROX_SIMPLE)
        else:
            _, contours, _ = cv2.findContours(my_mask, cv2.RETR_EXTERNAL,
                                              cv2.CHAIN_APPROX_SIMPLE)

        # shift the contours back down
        for contour in contours:
            for pnt in contour:
                if pnt[0][1] > border:
                    pnt[0][1] = pnt[0][1] - border
                else:
                    pnt[0][1] = 0
                if pnt[0][0] > border:
                    pnt[0][0] = pnt[0][0] - border
                else:
                    pnt[0][0] = 0

        closed_contours = []
        for contour in contours:
            epsilon = smooth_factor*cv2.arcLength(contour, True)
            approx = cv2.approxPolyDP(contour, epsilon, True)
            area = cv2.contourArea(approx)
            # if they are too small they are not edges
            if area < 200:
                continue
            closed_contours.append(approx)

        return closed_contours
page.py 文件源码 项目:doc2text 作者: jlsutherland 项目源码 文件源码 阅读 80 收藏 0 点赞 0 评论 0
def find_likely_rectangles(contours, sigma):
    contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]
    possible = []
    for c in contours:

        # approximate the contour
        peri = cv2.arcLength(c, True)
        approx = cv2.approxPolyDP(c, sigma * peri, True)
        box = make_box(approx)
        possible.append(box)

    return possible
find_rect_and_transform.py 文件源码 项目:quadrilaterals-rectifier 作者: michal2229 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def extract_rect(im):
    imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

    ret,thresh = cv2.threshold(imgray, 127, 255, 0)

    contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    # finding contour with max area
    largest = None
    for cnt in contours:
        if largest == None or cv2.contourArea(cnt) > cv2.contourArea(largest):
            largest = cnt

    peri = cv2.arcLength(largest, True)
    appr = cv2.approxPolyDP(largest, 0.02 * peri, True)

    #cv2.drawContours(im, appr, -1, (0,255,0), 3)
    points_list = [[i[0][0], i[0][1]] for i in appr] 

    left  = sorted(points_list, key = lambda p: p[0])[0:2]
    right = sorted(points_list, key = lambda p: p[0])[2:4]

    print("l " + str(left))
    print("r " + str(right))

    lu = sorted(left, key = lambda p: p[1])[0]
    ld = sorted(left, key = lambda p: p[1])[1]

    ru = sorted(right, key = lambda p: p[1])[0]
    rd = sorted(right, key = lambda p: p[1])[1]

    print("lu " + str(lu))
    print("ld " + str(ld))
    print("ru " + str(ru))
    print("rd " + str(rd))

    lu_ = [ (lu[0] + ld[0])/2, (lu[1] + ru[1])/2 ]
    ld_ = [ (lu[0] + ld[0])/2, (ld[1] + rd[1])/2 ]
    ru_ = [ (ru[0] + rd[0])/2, (lu[1] + ru[1])/2 ]
    rd_ = [ (ru[0] + rd[0])/2, (ld[1] + rd[1])/2 ]

    print("lu_ " + str(lu_))
    print("ld_ " + str(ld_))
    print("ru_ " + str(ru_))
    print("rd_ " + str(rd_))

    src_pts = np.float32(np.array([lu, ru, rd, ld]))
    dst_pts = np.float32(np.array([lu_, ru_, rd_, ld_]))

    h,w,b = im.shape
    H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)

    print("H" + str(H))

    imw =  cv2.warpPerspective(im, H, (w, h))

    return imw[lu_[1]:rd_[1], lu_[0]:rd_[0]] # cropping image
main_function.py 文件源码 项目:edison_developing 作者: vincentchung 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def camera_gesture_trigger():
    # Capture frame-by-frame
    ret, frame = cap.read()
    # Our operations on the frame come here
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    blur = cv2.GaussianBlur(gray,(5,5),0)
    ret,thresh1 = cv2.threshold(blur,70,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

    contours, hierarchy = cv2.findContours(thresh1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
    max_area=0

    for i in range(len(contours)):
        cnt=contours[i]
        area = cv2.contourArea(cnt)
        if(area>max_area):
            max_area=area
            ci=i
    cnt=contours[ci]
    hull = cv2.convexHull(cnt)
    moments = cv2.moments(cnt)

    cnt = cv2.approxPolyDP(cnt,0.01*cv2.arcLength(cnt,True),True)
    hull = cv2.convexHull(cnt,returnPoints = False)

    defects = cv2.convexityDefects(cnt,hull)                    

    if defects is not None:         
        if defects.shape[0] >= 5:
            return 1

    return 0
omr.py 文件源码 项目:omr 作者: rbaron 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_approx_contour(contour, tol=.01):
    """Get rid of 'useless' points in the contour"""
    epsilon = tol * cv2.arcLength(contour, True)
    return cv2.approxPolyDP(contour, epsilon, True)
parser.py 文件源码 项目:rosreestr2coord 作者: rendrom 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_image_xy_corner(self):
        """get ?artesian coordinates from raster"""
        import cv2

        if not self.image_path:
            return False
        image_xy_corners = []
        img = cv2.imread(self.image_path, cv2.IMREAD_GRAYSCALE)
        imagem = (255 - img)

        try:
            ret, thresh = cv2.threshold(imagem, 10, 128, cv2.THRESH_BINARY)
            try:
                contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            except Exception:
                im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)

            hierarchy = hierarchy[0]
            hierarhy_contours = [[] for _ in range(len(hierarchy))]
            for fry in range(len(contours)):
                currentContour = contours[fry]
                currentHierarchy = hierarchy[fry]
                cc = []
                # epsilon = 0.0005 * cv2.arcLength(contours[len(contours) - 1], True)
                approx = cv2.approxPolyDP(currentContour, self.epsilon, True)
                if len(approx) > 2:
                    for c in approx:
                        cc.append([c[0][0], c[0][1]])
                    parent_index = currentHierarchy[3]
                    index = fry if parent_index < 0 else parent_index
                    hierarhy_contours[index].append(cc)

            image_xy_corners = [c for c in hierarhy_contours if len(c) > 0]
            return image_xy_corners
        except Exception as ex:
            self.error(ex)
        return image_xy_corners
eclipse_renderer.py 文件源码 项目:eclipse2017 作者: google 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def getSunSize(self, p):
        """Get the size of the sun in screen pixels.

        This is a hack: it renders the sun, then finds the contour
        surrounding the sun and computes the center/radius of that.
        """
        self.fbo.bind()
        self.clear_background()
        self.fbo.release()
        dt, sun_alt, sun_az, moon_alt, moon_az, sun_r, moon_r, sep, parallactic_angle, lat, lon = p
        sun_coords = horizontal_to_cartesian(deg(sun_alt), deg(sun_az))
        sun_x, sun_y, sun_z = scale_vector(sun_coords, SUN_EARTH_DISTANCE)
        self.fbo.bind()
        self.draw_sun(sun_x, sun_y, sun_z)
        glFlush()
        self.fbo.release()
        image = self.fbo.toImage()
        # Find the contours of the sun in the image
        contours = self.find_contours(image)
        # Make a poly that fits the contour
        poly = cv2.approxPolyDP( np.array(contours[0]), 3, True )
        # Find the minimum enclosing circle of the polygon
        c = cv2.minEnclosingCircle(poly)
        self.fbo.bind()
        self.clear_background()
        self.fbo.release()
        return c


问题


面经


文章

微信
公众号

扫码关注公众号