python类addWeighted()的实例源码

Sharpen.py 文件源码 项目:DVD2FHD 作者: AMakeApp 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def sharpen_deblur(image):
    img = cv2.imread(image)

    output = cv2.GaussianBlur(img, (0, 0), 25)
    output = cv2.addWeighted(img, 1.75, output, -0.75, 0)

    os.remove(image)
    cv2.imwrite(image, output)
Unet_test.py 文件源码 项目:segmentation-visualization-training 作者: tkwoo 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def predict_image(flag):
    t_start = cv2.getTickCount()
    config = tf.ConfigProto()
    # config.gpu_options.per_process_gpu_memory_fraction = 0.9
    config.gpu_options.allow_growth = True
    set_session(tf.Session(config=config))

    with open(os.path.join(flag.ckpt_dir, flag.ckpt_name, 'model.json'), 'r') as json_file:
            loaded_model_json = json_file.read()
    model = model_from_json(loaded_model_json)
    weight_list = sorted(glob(os.path.join(flag.ckpt_dir, flag.ckpt_name, "weight*")))
    model.load_weights(weight_list[-1])
    print "[*] model load : %s"%weight_list[-1]
    t_total = (cv2.getTickCount() - t_start) / cv2.getTickFrequency() * 1000 
    print "[*] model loading Time: %.3f ms"%t_total

    imgInput = cv2.imread(flag.test_image_path, 0)
    input_data = imgInput.reshape((1,256,256,1))

    t_start = cv2.getTickCount()
    result = model.predict(input_data, 1)
    t_total = (cv2.getTickCount() - t_start) / cv2.getTickFrequency() * 1000
    print "Predict Time: %.3f ms"%t_total

    imgMask = (result[0]*255).astype(np.uint8)
    imgShow = cv2.cvtColor(imgInput, cv2.COLOR_GRAY2BGR)
    _, imgMask = cv2.threshold(imgMask, int(255*flag.confidence_value), 255, cv2.THRESH_BINARY)
    imgMaskColor = cv2.applyColorMap(imgMask, cv2.COLORMAP_JET)
    # imgZero = np.zeros((256,256), np.uint8)
    # imgMaskColor = cv2.merge((imgZero, imgMask, imgMask))
    imgShow = cv2.addWeighted(imgShow, 0.9, imgMaskColor, 0.3, 0.0)
    output_path = os.path.join(flag.output_dir, os.path.basename(flag.test_image_path))
    cv2.imwrite(output_path, imgShow)
    print "SAVE:[%s]"%output_path
callbacks.py 文件源码 项目:segmentation-visualization-training 作者: tkwoo 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def train_visualization_seg(self, model, epoch):
        image_name_list = sorted(glob(os.path.join(self.flag.data_path,'train/IMAGE/*/*.png')))
        print image_name_list

        image_name = image_name_list[-1]
        image_size = self.flag.image_size

        imgInput = cv2.imread(image_name, self.flag.color_mode)
        output_path = self.flag.output_dir
        input_data = imgInput.reshape((1,image_size,image_size,self.flag.color_mode*2+1))

        t_start = cv2.getTickCount()
        result = model.predict(input_data, 1)
        t_total = (cv2.getTickCount() - t_start) / cv2.getTickFrequency() * 1000
        print "[*] Predict Time: %.3f ms"%t_total

        imgMask = (result[0]*255).astype(np.uint8)
        imgShow = cv2.cvtColor(imgInput, cv2.COLOR_GRAY2BGR)
        imgMaskColor = cv2.applyColorMap(imgMask, cv2.COLORMAP_JET)
        imgShow = cv2.addWeighted(imgShow, 0.9, imgMaskColor, 0.4, 0.0)
        output_path = os.path.join(self.flag.output_dir, '%04d_'%epoch+os.path.basename(image_name))
        cv2.imwrite(output_path, imgShow)
        # print "SAVE:[%s]"%output_path
        # cv2.imwrite(os.path.join(output_path, 'img%04d.png'%epoch), imgShow)
        # cv2.namedWindow("show", 0)
        # cv2.resizeWindow("show", 800, 800)
        # cv2.imshow("show", imgShow)
        # cv2.waitKey(1)
main.py 文件源码 项目:Simple-Lane-Detection-System 作者: shivamsardana 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def weighted_img(img, initial_img, alpha=0.8, beta=1., lamda=0.):
    return cv2.addWeighted(initial_img, alpha, img, beta, lamda)
track.py 文件源码 项目:DrosophilaCooperative 作者: avaccari 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def processFrame(self):
        # If we are enhancing the image
        if self.enhance:
            # Frangi vesselness to highlight tubuar structures
            gray = cv2.cvtColor(self.sourceFrame, cv2.COLOR_BGR2GRAY)
            tub = tubes(gray, [5, 12])
            tubular = cv2.cvtColor(tub, cv2.COLOR_GRAY2BGR)

            # Merge with original to ennhance tubular structures
            high = 0.3
            rest = 1.0 - high
            colorized = cv2.addWeighted(self.sourceFrame, rest, tubular, high, 0.0)
    #        colorized = cv2.add(self.sourceFrame, tubular)

            # Tile horizontally
            self.processedFrame = np.concatenate((self.sourceFrame,
                                                  tubular,
                                                  colorized),
                                                 axis=1)
        else:
            self.processedFrame = self.sourceFrame;

        self.workingFrame = self.processedFrame.copy()

        # If we are tracking, track and show analysis
        if self.tracking is True:
            self.trackObjects()
            self.showBehavior()
img_utils.py 文件源码 项目:kaggle-carvana 作者: ematvey 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def create_checkpoint_mask(img, mask, predicted_mask):
    p_mask = predicted_mask
    assert p_mask.shape[0] < p_mask.shape[1]
    if p_mask.shape == (CARVANA_H, CARVANA_W + 2):
        p_mask = p_mask[:, 1:-1]
    else:
        p_mask = cv2.resize(p_mask, (CARVANA_W, CARVANA_H),
                            interpolation=cv2.INTER_NEAREST)
    p_mask = (p_mask > 0.5).astype(np.uint8)
    true_mask = mask_to_bgr(mask, 0, 255, 0)
    p_mask = mask_to_bgr(p_mask, 0, 0, 255)
    w = cv2.addWeighted(img, 1.0, true_mask, 0.3, 0)
    w = cv2.addWeighted(w, 1.0, p_mask, 0.5, 0)
    return w
putTextAlpha.py 文件源码 项目:imgProcessor 作者: radjkarl 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def putTextAlpha(img, text, alpha, org, fontFace, fontScale, color,
                 thickness):  # , lineType=None
    '''
    Extends cv2.putText with [alpha] argument
    '''

    x, y = cv2.getTextSize(text, fontFace,
                           fontScale, thickness)[0]

    ox, oy = org

    imgcut = img[oy - y - 3:oy, ox:ox + x]

    if img.ndim == 3:
        txtarr = np.zeros(shape=(y + 3, x, 3), dtype=np.uint8)
    else:
        txtarr = np.zeros(shape=(y + 3, x), dtype=np.uint8)

    cv2.putText(txtarr, text, (0, y), fontFace,
                fontScale, color,
                thickness=thickness
                #, lineType=lineType
                )

    cv2.addWeighted(txtarr, alpha, imgcut, 1, 0, imgcut, -1)
    return img
heatmap.py 文件源码 项目:football-stats 作者: dev-labs-bg 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def drawOpacityCircle(self, x, y, colorR, colorG, colorB, radius, thickness):
        overlay = self.frame.copy()
        cv2.circle(overlay, (x, y), radius, (colorB, colorG, colorR), thickness)
        alpha = 0.25
        cv2.addWeighted(overlay, alpha, self.frame, 1 - alpha, 0, self.frame)
individual.py 文件源码 项目:PolyPic 作者: Alfo5123 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def generate( self ):

        # Create black background image and fill it up with random polygons

        img = np.zeros((self.height, self.width, 3), np.uint8)

        overlay = img.copy()
        output = img.copy()

        for i in range(self.size):

            info = self.genes[i].getInfo()

            if self.type == 1:

                cv2.circle(overlay,info[0],  info[1], info[2], -1)
                cv2.addWeighted(overlay, info[3], output, 1 - info[3], 0, output)

            elif self.type == 2:

                cv2.ellipse(overlay,info[0],info[1],info[2],0,360,info[3],-1)
                cv2.addWeighted(overlay, info[4], output, 1 - info[4], 0, output)

            elif self.type == 3:

                cv2.fillConvexPoly(overlay,np.asarray(info[0]), info[1])
                cv2.addWeighted(overlay, info[2], output, 1 - info[2], 0, output)

            elif self.type == 4:

                cv2.fillConvexPoly(overlay, np.asarray(info[0]), info[1])
                cv2.addWeighted(overlay, info[2], output, 1 - info[2], 0, output  )

        return output
imgproc_funcfile.py 文件源码 项目:ghetto_omr 作者: pohzhiee 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def outlining(img):
    #kernel size
    kernel_size=3
    #-------------------------------------------------
    #bilateral filter, sharpen, thresh image
    biblur=cv2.bilateralFilter(img,20,175,175)
    sharp=cv2.addWeighted(img,1.55,biblur,-0.5,0)
    ret1,thresh1 = cv2.threshold(sharp,127,255,cv2.THRESH_OTSU)

    #negative and closed image
    inv=cv2.bitwise_not(thresh1)
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size))
    closed = cv2.morphologyEx(inv, cv2.MORPH_CLOSE, kernel)
    return closed
featuresColor.py 文件源码 项目:recognizeFitExercise 作者: tyiannak 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def getRGBS(img, PLOT = False):

    image = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

    # grab the image channels, initialize the tuple of colors,
    # the figure and the flattened feature vector   
    features = []
    featuresSobel = []
    Grayscale = cv2.cvtColor(img, cv2.cv.CV_BGR2GRAY)
    histG = cv2.calcHist([Grayscale], [0], None, [16], [0, 256])
    histG = histG / histG.sum()
    features.extend(histG[:,0].tolist())


    grad_x = np.abs(cv2.Sobel(Grayscale, cv2.CV_16S, 1, 0, ksize = 3, scale = 1, delta = 0, borderType = cv2.BORDER_DEFAULT))
    grad_y = np.abs(cv2.Sobel(Grayscale, cv2.CV_16S, 0, 1, ksize = 3, scale = 1, delta = 0, borderType = cv2.BORDER_DEFAULT))
    abs_grad_x = cv2.convertScaleAbs(grad_x)
    abs_grad_y = cv2.convertScaleAbs(grad_y)
    dst = cv2.addWeighted(abs_grad_x,0.5,abs_grad_y,0.5,0)
    histSobel = cv2.calcHist([dst], [0], None, [16], [0, 256])
    histSobel = histSobel / histSobel.sum()
    features.extend(histSobel[:,0].tolist())

    Fnames = []
    Fnames.extend(["Color-Gray"+str(i) for i in range(8)])
    Fnames.extend(["Color-GraySobel"+str(i) for i in range(8)])

    return features, Fnames
alignment.py 文件源码 项目:car-detection 作者: mmetcalfe 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_gradient(im):
    # Calculate the x and y gradients using Sobel operator
    grad_x = cv2.Sobel(im,cv2.CV_32F,1,0,ksize=3)
    grad_y = cv2.Sobel(im,cv2.CV_32F,0,1,ksize=3)

    # Combine the two gradients
    grad = cv2.addWeighted(np.absolute(grad_x), 0.5, np.absolute(grad_y), 0.5, 0)
    # print grad.dtype
    # print grad.shape
    return grad

# Based on: http://www.learnopencv.com/image-alignment-ecc-in-opencv-c-python/
solver.py 文件源码 项目:airport 作者: cfircohen 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def ShowSolution(images, puzzle, solution, frame, box):
  cell_size = np.array([box.w / 4, box.h / 4])
  for piece_type, piece, i, j in solution:
    top_left_loc = np.array([box.x, box.y]) + (np.array([j, i]) -
                                               np.array([1, 1])) * cell_size
    color = pieces.Colors[piece_type]
    piece_img = np.zeros_like(frame)
    for square in itertools.product(range(2), range(2)):
      if piece[square] == board.SquareType.AIR:
        continue

      loc = top_left_loc + np.array(square[::-1]) * cell_size
      piece_img = cv2.rectangle(piece_img, tuple(loc), tuple(loc + cell_size),
                                color, -2)

      if piece[square] in images:
        image = cv2.resize(images[piece[square]], tuple(cell_size))
        blend = np.zeros_like(piece_img)
        blend[loc[1]:loc[1] + cell_size[1], loc[0]:loc[0] + cell_size[
            0]] = image
        piece_img = cv2.addWeighted(piece_img, 1.0, blend, 1.0, 0)

    piece_gray = cv2.cvtColor(piece_img, cv2.COLOR_RGB2GRAY)
    _, piece_gray = cv2.threshold(piece_gray, 10, 255, cv2.THRESH_BINARY)
    _, contours, _ = cv2.findContours(piece_gray, cv2.RETR_EXTERNAL,
                                      cv2.CHAIN_APPROX_SIMPLE)
    piece_img = cv2.drawContours(piece_img, contours, -1, (255, 255, 255), 3)

    frame = cv2.addWeighted(frame, 1.0, piece_img, 0.7, 0)
    cv2.imshow("Planes", frame)
eclipse_renderer.py 文件源码 项目:eclipse2017 作者: google 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def paintGL(self, sun_x, sun_y, sun_z, moon_x, moon_y, moon_z):
        # Draw the sun
        self.fbo.bind()
        self.draw_sun(sun_x, sun_y, sun_z)
        glFlush()
        self.fbo.release()
        image = self.fbo.toImage()

        # Produce blurred image of sun
        npimage = qimage_to_numpy(image)
        h, w, b = npimage.shape
        blur = cv2.GaussianBlur(npimage, (75, 75), 0, 0)
        cv2.convertScaleAbs(blur, blur, 2, 1)
        # Combine the blurred with the sun
        combo = cv2.addWeighted(blur, 0.5, npimage, 0.5, -1)
        h, w, b = combo.shape
        qimage = QtGui.QImage(combo.data,w,h,QtGui.QImage.Format_ARGB32).rgbSwapped()
        self.fbo.bind()
        device = QtGui.QOpenGLPaintDevice(RES_X, RES_Y)
        painter = QtGui.QPainter()
        painter.begin(device)
        rect = QtCore.QRect(0, 0, RES_X, RES_Y)
        # Draw the blurred sun/sun combo image on the screen
        painter.drawImage(rect, qimage, rect)
        painter.end()
        self.fbo.release()

        # Draw the moon
        self.fbo.bind()
        self.draw_moon(moon_x, moon_y, moon_z)
        glFlush()
        self.fbo.release()
hog.py 文件源码 项目:Hog-feature 作者: PENGZhaoqing 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def global_gradient(self):
        gradient_values_x = cv2.Sobel(self.img, cv2.CV_64F, 1, 0, ksize=5)
        gradient_values_y = cv2.Sobel(self.img, cv2.CV_64F, 0, 1, ksize=5)
        gradient_magnitude = cv2.addWeighted(gradient_values_x, 0.5, gradient_values_y, 0.5, 0)
        gradient_angle = cv2.phase(gradient_values_x, gradient_values_y, angleInDegrees=True)
        return gradient_magnitude, gradient_angle
watershedApp.py 文件源码 项目:videolabeler 作者: imatge-upc 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def watershed(self):
        m = self.markers.copy()
        cv2.watershed(self.img, m)
        self.returnVar = m.copy()
        overlay = self.colors[np.maximum(m, 0)]
        vis = cv2.addWeighted(self.img, 0.5, overlay, 0.5, 0.0, dtype=cv2.CV_8UC3)
        cv2.namedWindow('watershed', cv2.WINDOW_NORMAL)
        cv2.moveWindow('watershed',780,200)
        cv2.imshow('watershed', vis)
cnn_db_loader.py 文件源码 项目:thesis_scripts 作者: PhilippKopp 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _get_gradient_magnitude(im):
    "Get magnitude of gradient for given image"
    ddepth = cv2.CV_32F
    dx = cv2.Sobel(im, ddepth, 1, 0)
    dy = cv2.Sobel(im, ddepth, 0, 1)
    dxabs = cv2.convertScaleAbs(dx)
    dyabs = cv2.convertScaleAbs(dy)
    mag = cv2.addWeighted(dxabs, 0.5, dyabs, 0.5, 0)

    return np.average(mag)
image.py 文件源码 项目:endless-lake-player 作者: joeydong 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def highlight_regions(image, region_rects):
    # Darken image with mask
    composite_image = cv2.addWeighted(image, 0.50, numpy.zeros(image.shape, dtype="uint8"), 0.50, 0)

    # Highlight region_of_interest
    for rect in region_rects:
        (x1, x2, y1, y2) = (rect["x1"], rect["x2"], rect["y1"], rect["y2"])
        composite_image[y1:y2, x1:x2] = image[y1:y2, x1:x2]

    return composite_image
lane_detection.py 文件源码 项目:CarLaneDetection 作者: leftthomas 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def process_an_image(img):
    roi_vtx = np.array([[(0, img.shape[0]), (460, 325), (520, 325), (img.shape[1], img.shape[0])]])

    gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    blur_gray = cv2.GaussianBlur(gray, (blur_ksize, blur_ksize), 0, 0)
    edges = cv2.Canny(blur_gray, canny_lthreshold, canny_hthreshold)
    roi_edges = roi_mask(edges, roi_vtx)
    line_img = hough_lines(roi_edges, rho, theta, threshold, min_line_length, max_line_gap)
    res_img = cv2.addWeighted(img, 0.8, line_img, 1, 0)

    # plt.figure()
    # plt.imshow(gray, cmap='gray')
    # plt.savefig('../resources/gray.png', bbox_inches='tight')
    # plt.figure()
    # plt.imshow(blur_gray, cmap='gray')
    # plt.savefig('../resources/blur_gray.png', bbox_inches='tight')
    # plt.figure()
    # plt.imshow(edges, cmap='gray')
    # plt.savefig('../resources/edges.png', bbox_inches='tight')
    # plt.figure()
    # plt.imshow(roi_edges, cmap='gray')
    # plt.savefig('../resources/roi_edges.png', bbox_inches='tight')
    # plt.figure()
    # plt.imshow(line_img, cmap='gray')
    # plt.savefig('../resources/line_img.png', bbox_inches='tight')
    # plt.figure()
    # plt.imshow(res_img)
    # plt.savefig('../resources/res_img.png', bbox_inches='tight')
    # plt.show()


    return res_img


# img = mplimg.imread("../resources/lane.jpg")
# process_an_image(img)
houghTransform.py 文件源码 项目:SDcarsLaneDetection 作者: Nazanin1369 项目源码 文件源码 阅读 54 收藏 0 点赞 0 评论 0
def houghTransformAndRegionSelect(image, edges):
    rho = 1
    theta = np.pi/180
    threshold = 1
    min_line_length = 5
    max_line_gap = 3


    # Next we'll create a masked edges image using cv2.fillPoly()
    mask = np.zeros_like(edges)
    ignore_mask_color = 255

    # This time we are defining a four sided polygon to mask
    imshape = image.shape
    vertices = np.array([[(0,imshape[0]),(450, 290), (490, 290), (imshape[1],imshape[0])]], dtype=np.int32)
    cv2.fillPoly(mask, vertices, ignore_mask_color)
    masked_edges = cv2.bitwise_and(edges, mask)

    line_image = np.copy(image)*0

    # Run Hough on edge detected image
    # Output "lines" is an array containing endpoints of detected line segments
    lines = cv2.HoughLinesP(masked_edges, rho, theta, threshold, np.array([]), min_line_length, max_line_gap)

    # Iterate over the output "lines" and draw lines on a blank image
    for line in lines:
        for x1,y1,x2,y2 in line:
            cv2.line(line_image,(x1,y1),(x2,y2),(255,0,0),10)

    # Create a "color" binary image to combine with line image
    color_edges = np.dstack((edges, edges, edges))

    # Draw the lines on the edge image
    lines_edges = cv2.addWeighted(color_edges, 0.8, line_image, 1, 0)

    return lines_edges


问题


面经


文章

微信
公众号

扫码关注公众号