python类COLOR_RGB2BGR的实例源码

tester.py 文件源码 项目:Deformable-ConvNets 作者: msracver 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def draw_all_detection(im_array, detections, class_names, scale, cfg, threshold=1e-1):
    """
    visualize all detections in one image
    :param im_array: [b=1 c h w] in rgb
    :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ]
    :param class_names: list of names in imdb
    :param scale: visualize the scaled image
    :return:
    """
    import cv2
    import random
    color_white = (255, 255, 255)
    im = image.transform_inverse(im_array, cfg.network.PIXEL_MEANS)
    # change to bgr
    im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
    for j, name in enumerate(class_names):
        if name == '__background__':
            continue
        color = (random.randint(0, 256), random.randint(0, 256), random.randint(0, 256))  # generate a random color
        dets = detections[j]
        for det in dets:
            bbox = det[:4] * scale
            score = det[-1]
            if score < threshold:
                continue
            bbox = map(int, bbox)
            cv2.rectangle(im, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color=color, thickness=2)
            cv2.putText(im, '%s %.3f' % (class_names[j], score), (bbox[0], bbox[1] + 10),
                        color=color_white, fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.5)
    return im
tester.py 文件源码 项目:Deformable-ConvNets 作者: msracver 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def draw_all_detection(im_array, detections, class_names, scale, cfg, threshold=1e-1):
    """
    visualize all detections in one image
    :param im_array: [b=1 c h w] in rgb
    :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ]
    :param class_names: list of names in imdb
    :param scale: visualize the scaled image
    :return:
    """
    import cv2
    import random
    color_white = (255, 255, 255)
    im = image.transform_inverse(im_array, cfg.network.PIXEL_MEANS)
    # change to bgr
    im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
    for j, name in enumerate(class_names):
        if name == '__background__':
            continue
        color = (random.randint(0, 256), random.randint(0, 256), random.randint(0, 256))  # generate a random color
        dets = detections[j]
        for det in dets:
            bbox = det[:4] * scale
            score = det[-1]
            if score < threshold:
                continue
            bbox = map(int, bbox)
            cv2.rectangle(im, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color=color, thickness=2)
            cv2.putText(im, '%s %.3f' % (class_names[j], score), (bbox[0], bbox[1] + 10),
                        color=color_white, fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.5)
    return im
tester.py 文件源码 项目:Deep-Feature-Flow 作者: msracver 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def draw_all_detection(im_array, detections, class_names, scale, cfg, threshold=1e-1):
    """
    visualize all detections in one image
    :param im_array: [b=1 c h w] in rgb
    :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ]
    :param class_names: list of names in imdb
    :param scale: visualize the scaled image
    :return:
    """
    import cv2
    import random
    color_white = (255, 255, 255)
    im = image.transform_inverse(im_array, cfg.network.PIXEL_MEANS)
    # change to bgr
    im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
    for j, name in enumerate(class_names):
        if name == '__background__':
            continue
        color = (random.randint(0, 256), random.randint(0, 256), random.randint(0, 256))  # generate a random color
        dets = detections[j]
        for det in dets:
            bbox = det[:4] * scale
            score = det[-1]
            if score < threshold:
                continue
            bbox = map(int, bbox)
            cv2.rectangle(im, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color=color, thickness=2)
            cv2.putText(im, '%s %.3f' % (class_names[j], score), (bbox[0], bbox[1] + 10),
                        color=color_white, fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.5)
    return im
tester.py 文件源码 项目:Deep-Feature-Flow 作者: msracver 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def draw_all_detection(im_array, detections, class_names, scale, cfg, threshold=1e-1):
    """
    visualize all detections in one image
    :param im_array: [b=1 c h w] in rgb
    :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ]
    :param class_names: list of names in imdb
    :param scale: visualize the scaled image
    :return:
    """
    import cv2
    import random
    color_white = (255, 255, 255)
    im = image.transform_inverse(im_array, cfg.network.PIXEL_MEANS)
    # change to bgr
    im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
    for j, name in enumerate(class_names):
        if name == '__background__':
            continue
        color = (random.randint(0, 256), random.randint(0, 256), random.randint(0, 256))  # generate a random color
        dets = detections[j]
        for det in dets:
            bbox = det[:4] * scale
            score = det[-1]
            if score < threshold:
                continue
            bbox = map(int, bbox)
            cv2.rectangle(im, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color=color, thickness=2)
            cv2.putText(im, '%s %.3f' % (class_names[j], score), (bbox[0], bbox[1] + 10),
                        color=color_white, fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.5)
    return im
env_lab.py 文件源码 项目:rl_3d 作者: avdmitry 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def Observation(self):
        obs = self.env.observations()
        img = obs["RGB_INTERLACED"]
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        return img
server.py 文件源码 项目:TFFRCNN 作者: InterVideo 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def imread_from_base64(base64_str):
    sbuf = StringIO()
    sbuf.write(base64.b64decode(base64_str))
    pimg = Image.open(sbuf)
    return cv2.cvtColor(np.array(pimg), cv2.COLOR_RGB2BGR)
SaveToFile.py 文件源码 项目:dataArtist 作者: radjkarl 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def exportCV2(self):
        '''
        Use cv2.imwrite() to save the image array
        '''
        w = self.display.widget

        def fn(path, img):
            r = self.pRange.value()
            if r == '0-max':
                r = (0, w.levelMax)
            elif r == 'min-max':
                r = (w.levelMin, w.levelMax)
            else:  # 'current'
                r = w.ui.histogram.getLevels()
            int_img = toUIntArray(img,
                                  # cutNegative=self.pCutNegativeValues.value(),
                                  cutHigh=~self.pStretchValues.value(),
                                  range=r,
                                  dtype={'8 bit': np.uint8,
                                         '16 bit': np.uint16}[
                                      self.pDType.value()])
            if isColor(int_img):
                int_img = cv2.cvtColor(int_img, cv2.COLOR_RGB2BGR)

            cv2.imwrite(path, int_img)

        return self._export(fn)
show_boxes.py 文件源码 项目:ssd_pytorch 作者: miraclebiu 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def draw_all_detection(im, detections, class_names, scale = 1.0):
    """
    visualize all detections in one image
    :param im_array: [b=1 c h w] in rgb
    :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ]
    :param class_names: list of names in imdb
    :param scale: visualize the scaled image
    :return:
    """
    import cv2
    import random
    color_white = (255, 255, 255)
    # im = image.transform_inverse(im_array, cfg.network.PIXEL_MEANS)
    # change to bgr
    #im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
    for j, name in enumerate(class_names):
        if name == '__background__':
            continue
        color = (random.randint(0, 256), random.randint(0, 256), random.randint(0, 256))  # generate a random color
        dets = detections[j]
        for det in dets:
            bbox = det[:4] * scale
            score = det[-1]
            # if score < threshold:
            #     continue
            bbox = map(int, bbox)
            cv2.rectangle(im, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color=color, thickness=2)
            cv2.putText(im, '%s %.3f' % (class_names[j], score), (bbox[0], bbox[1] + 10),
                        color=color_white, fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.5)
    return im
Environment.py 文件源码 项目:DQN 作者: boluoweifenda 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def observe(self):
        if self.show is True:
            cv2.imshow("show", cv2.cvtColor(self.env.getScreenRGB(),cv2.COLOR_RGB2BGR))
            cv2.waitKey(self.delay)
        return cv2.resize(self.env.getScreenGrayscale(), (self.width, self.height), interpolation=cv2.INTER_LINEAR)
            # return (cv2.resize(cv2.cvtColor(self.env.getScreenRGB(),cv2.COLOR_BGR2YUV)[:,:,0], (self.width, self.height) , interpolation=cv2.INTER_LINEAR)) #/ np.float32(255)
ingest.py 文件源码 项目:esper 作者: scanner-research 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def make_thumbnail(video, db):
    indices = [int(n * video.num_frames) for n in [0.1, 0.35, 0.60, 0.85]]
    table = db.table(video.path)
    frames = [f[0] for _, f in table.load([1], rows=indices)]
    img = make_montage(len(frames), iter(frames), frame_width=150, frames_per_row=2)
    run('mkdir -p assets/thumbnails')
    cv2.imwrite('assets/thumbnails/{}.jpg'.format(video.id), cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
gender_kernel.py 文件源码 项目:esper 作者: scanner-research 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def execute(self, columns):
        global i
        [img, bboxes] = columns
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        [h, w] = img.shape[:2]
        bboxes = parsers.bboxes(bboxes, self.protobufs)
        imgs = [img[int(h*bbox.y1):int(h*bbox.y2), int(w*bbox.x1):int(w*bbox.x2)]
                for bbox in bboxes]
        for img in imgs:
            cv2.imwrite('/app/tmp/{:05d}.jpg'.format(i), img)
            i += 1
        genders = self.rc.get_gender_batch(imgs)
        outputs = [struct.pack('=cf', label, score) for [label, score] in genders]
        assert(len(outputs) == len(imgs))
        return [''.join(outputs)]
opencv_functions.py 文件源码 项目:HappyNet 作者: danduncan 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def faceCrop(targetDir, imgList, color, single_face):
    # Load list of Haar cascades for faces
    faceCascades = load_cascades()

    # Iterate through images
    face_list = []
    for img in imgList:
        if os.path.isdir(img):
            continue
        pil_img = Image.open(img)
        if color:
            cv_img  = cv.cvtColor(np.array(pil_img), cv.COLOR_RGB2BGR)
        else:
            cv_img = np.array(pil_img)
            # Convert to grayscale if this image is actually color
            if cv_img.ndim == 3:
                cv_img = cv.cvtColor(np.array(pil_img), cv.COLOR_BGR2GRAY)

        # Detect all faces in this image
        scaled_img, faces = DetectFace(cv_img, color, faceCascades, single_face, second_pass=False, draw_rects=False)

        # Iterate through faces
        n=1
        for face in faces:
            cropped_cv_img = imgCrop(scaled_img, face, scale=1.0)
            if color:
                cropped_cv_img = rgb(cropped_cv_img)
            fname, ext = os.path.splitext(img)
            cropped_pil_img = Image.fromarray(cropped_cv_img)
            #save_name = loc + '/cropped/' + fname.split('/')[-1] + '_crop' + str(n) + ext
            save_name = targetDir + '/' + fname.split('/')[-1] + '_crop' + str(n) + ext
            cropped_pil_img.save(save_name)
            face_list.append(save_name)
            n += 1

    return face_list

# Add an emoji to an image at a specified point and size
# Inputs: img, emoji are ndarrays of WxHx3
#         faces is a list of (x,y,w,h) tuples for each face to be replaced
utils.py 文件源码 项目:faststyle 作者: ghwatson 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def imwrite(path, img):
    """Wrapper around cv2.imwrite. Switches it to RGB input convention.

    :param path:
        String indicating path to save image to.
    :param img:
        3D RGB numpy array of image.
    """
    img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
    cv2.imwrite(path, img)
slides.py 文件源码 项目:slide-transition-detector 作者: brene 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def convert_to_opencv(img):
    return cv2.cvtColor(numpy.array(img.convert('RGB')), cv2.COLOR_RGB2BGR)
step_and_observe_quad.py 文件源码 项目:citysim3d 作者: alexlee-gk 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def main():
    # actions are translation and angular speed (angular velocity constraint to the (0, 0, 1) axis)
    action_space = TranslationAxisAngleSpace(low=[-10, -10, -10, -np.pi/4],
                                             high=[10, 10, 10, np.pi/4],
                                             axis=[0, 0, 1])
    env = SimpleQuadPanda3dEnv(action_space, sensor_names=['image', 'depth_image'])

    num_trajs = 10
    num_steps = 100
    done = False
    for traj_iter in range(num_trajs):
        env.reset()
        for step_iter in range(num_steps):
            action = action_space.sample()
            obs, _, _, _ = env.step(action)
            image, depth_image = obs['image'], obs['depth_image']

            # convert BGR image to RGB image
            image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
            cv2.imshow("image", image)

            # rescale depth image to be between 0 and 255
            depth_scale = depth_image.max() - depth_image.min()
            depth_offset = depth_image.min()
            depth_image = np.clip((depth_image - depth_offset) / depth_scale, 0.0, 1.0)
            depth_image = (255.0 * depth_image).astype(np.uint8)
            cv2.imshow("depth image", depth_image)

            env.render()

            key = cv2.waitKey(10)
            key &= 255
            if key == 27 or key == ord('q'):
                print("Pressed ESC or q, exiting")
                done = True

            if done:
                break
        if done:
            break
trainer.py 文件源码 项目:ssd_tensorflow 作者: seann999 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def draw_matches(I, boxes, matches, anns):
    I = np.copy(I) * 255.0

    for o in range(len(layer_boxes)):
        for y in range(c.out_shapes[o][2]):
            for x in range(c.out_shapes[o][1]):
                for i in range(layer_boxes[o]):
                    match = matches[o][x][y][i]

                    # None if not positive nor negative
                    # -1 if negative
                    # ground truth indices if positive

                    if match == -1:
                        coords = center2cornerbox(boxes[o][x][y][i])
                        draw_rect(I, coords, (255, 0, 0))
                    elif isinstance(match, tuple):
                        coords = center2cornerbox(boxes[o][x][y][i])
                        draw_rect(I, coords, (0, 0, 255))
                        # elif s == 2:
                        #    draw_rect(I, boxes[o][x][y][i], (0, 0, 255), 2)

    for gt_box, id in anns:
        draw_rect(I, gt_box, (0, 255, 0), 3)
        cv2.putText(I, i2name[id], (int(gt_box[0] * image_size), int((gt_box[1] + gt_box[3]) * image_size)),
                    cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0))

    I = cv2.cvtColor(I.astype(np.uint8), cv2.COLOR_RGB2BGR)
    cv2.imshow("matches", I)
    cv2.waitKey(1)
trainer.py 文件源码 项目:ssd_tensorflow 作者: seann999 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def draw_matches2(I, pos, neg, true_labels, true_locs):
    I = np.copy(I) * 255.0
    index = 0

    for o in range(len(layer_boxes)):
        for y in range(c.out_shapes[o][2]):
            for x in range(c.out_shapes[o][1]):
                for i in range(layer_boxes[o]):
                    if pos[index] > 0:
                        d = c.defaults[o][x][y][i]
                        coords = default2cornerbox(d, true_locs[index])
                        draw_rect(I, coords, (0, 255, 0))
                        coords = center2cornerbox(d)
                        draw_rect(I, coords, (0, 0, 255))
                        cv2.putText(I, i2name[true_labels[index]],
                                    (int(coords[0] * image_size), int((coords[1] + coords[3]) * image_size)),
                                    cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255))
                    elif neg[index] > 0:
                        pass
                        #d = defaults[o][x][y][i]
                        #coords = default2global(d, pred_locs[index])
                        #draw_rect(I, coords, (255, 0, 0))
                        #cv2.putText(I, coco.i2name[true_labels[index]],
                        #            (int(coords[0] * image_size), int((coords[1] + coords[3]) * image_size)),
                        #            cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0))

                    index += 1

    I = cv2.cvtColor(I.astype(np.uint8), cv2.COLOR_RGB2BGR)
    cv2.imshow("matches2", I)
    cv2.waitKey(1)
gui_main.py 文件源码 项目:Farmbot_GeneralAP 作者: SpongeYao 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def saveImg_function(self, arg_frame,arg_savePath, arg_filename):
        utils_tool.check_path(arg_savePath)
        # make sure output dir exists
        #if(not path.isdir(arg_savePath)):
        #    makedirs(arg_savePath)
        #tmp= cv2.cvtColor(arg_frame, cv2.COLOR_RGB2BGR)
        cv2.imwrite(arg_savePath+arg_filename+'.jpg',arg_frame)
imageio.py 文件源码 项目:jenova 作者: dungba88 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def read_base64(base64_string):
    """read an image from base64 string"""
    sbuf = BytesIO()
    sbuf.write(base64.b64decode(base64_string))
    pimg = Image.open(sbuf)
    return cv2.cvtColor(np.array(pimg), cv2.COLOR_RGB2BGR)
02-train.py 文件源码 项目:saliency-salgan-2017 作者: imatge-upc 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def train():
    """
    Train both generator and discriminator
    :return:
    """
    # Load data
    print 'Loading training data...'
    with open('../saliency-2016-lsun/validationSample240x320.pkl', 'rb') as f:
    # with open(TRAIN_DATA_DIR, 'rb') as f:
        train_data = pickle.load(f)
    print '-->done!'

    print 'Loading validation data...'
    with open('../saliency-2016-lsun/validationSample240x320.pkl', 'rb') as f:
    # with open(VALIDATION_DATA_DIR, 'rb') as f:
        validation_data = pickle.load(f)
    print '-->done!'

    # Choose a random sample to monitor the training
    num_random = random.choice(range(len(validation_data)))
    validation_sample = validation_data[num_random]
    cv2.imwrite('./' + DIR_TO_SAVE + '/validationRandomSaliencyGT.png', validation_sample.saliency.data)
    cv2.imwrite('./' + DIR_TO_SAVE + '/validationRandomImage.png', cv2.cvtColor(validation_sample.image.data,
                                                                                cv2.COLOR_RGB2BGR))

    # Create network

    if flag == 'salgan':
        model = ModelSALGAN(INPUT_SIZE[0], INPUT_SIZE[1])
        # Load a pre-trained model
        # load_weights(net=model.net['output'], path="nss/gen_", epochtoload=15)
        # load_weights(net=model.discriminator['prob'], path="test_dialted/disrim_", epochtoload=54)
        salgan_batch_iterator(model, train_data, validation_sample.image.data)

    elif flag == 'bce':
        model = ModelBCE(INPUT_SIZE[0], INPUT_SIZE[1])
        # Load a pre-trained model
        # load_weights(net=model.net['output'], path='test/gen_', epochtoload=15)
        bce_batch_iterator(model, train_data, validation_sample.image.data)
    else:
        print "Invalid input argument."


问题


面经


文章

微信
公众号

扫码关注公众号