python类IMREAD_GRAYSCALE的实例源码

v1-4.py 文件源码 项目:meterOCR 作者: DBMSRmutl 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def readimage():
    image = cv2.imread('test.jpg', cv2.IMREAD_GRAYSCALE) # reading image
    if image is None:
        print 'Can not find the image!'
        exit(-1)
    return image

#-------------------------------------------------------------------------------------
v1-3-arg-2016-09-02.py 文件源码 项目:meterOCR 作者: DBMSRmutl 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def readimage(filename):
    print filename
    image = cv2.imread(filename, cv2.IMREAD_GRAYSCALE) # reading image
    if image is None:
        print 'Can not find the image!'
        sys.stdin.read(1)
        exit(-1)
    return image

#-------------------------------------------------------------------------------------
v1-3-arg.py 文件源码 项目:meterOCR 作者: DBMSRmutl 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def readimage(filename):
    print filename
    image = cv2.imread(filename, cv2.IMREAD_GRAYSCALE) # reading image
    if image is None:
        print 'Can not find the image!'
        sys.stdin.read(1)
        exit(-1)
    return image

#-------------------------------------------------------------------------------------
test_swt.py 文件源码 项目:bib-tagger 作者: KateRita 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def test_swt(self):
        cv2.IMREAD_GRAYSCALE
        image = cv2.imread(os.path.join(self.photodir,"GloryDays","bib-sample.jpg"),cv2.IMREAD_GRAYSCALE)

        SWTImage = SWTScrubber.scrub(image)

        cv2.imwrite(os.path.join(self.photooutdir,"SWTImage.jpg"),SWTImage*255)
test_monkey.py 文件源码 项目:ATX 作者: NetEaseGame 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_find_scene():
    scenes = {}
    for s in os.listdir('txxscene'):
        if '-' in s: continue
        i = cv2.imread(os.path.join('txxscene', s), cv2.IMREAD_GRAYSCALE)
        scenes[s] = i

    # names = [os.path.join('scene', c) for c in os.listdir('scene')]
    imgs = {}
    for n in os.listdir('scene'):
        i = cv2.imread(os.path.join('scene', n), cv2.IMREAD_GRAYSCALE)
        i = cv2.resize(i, (960, 540))
        imgs[n] = i

    for name, img in imgs.iteritems():
        for scene, tmpl in scenes.iteritems():
            res = cv2.matchTemplate(img, tmpl, cv2.TM_CCOEFF_NORMED)
            min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
            if max_val < 0.6:
                continue
            x, y = max_loc
            h, w = tmpl.shape
            cv2.rectangle(img, (x, y), (x+w, y+h), 255, 2)
            print name, scene, max_val, min_val
            cv2.imshow('found', img)
            cv2.waitKey()
test_monkey.py 文件源码 项目:AutomatorX 作者: xiaoyaojjian 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_find_scene():
    scenes = {}
    for s in os.listdir('txxscene'):
        if '-' in s: continue
        i = cv2.imread(os.path.join('txxscene', s), cv2.IMREAD_GRAYSCALE)
        scenes[s] = i

    # names = [os.path.join('scene', c) for c in os.listdir('scene')]
    imgs = {}
    for n in os.listdir('scene'):
        i = cv2.imread(os.path.join('scene', n), cv2.IMREAD_GRAYSCALE)
        i = cv2.resize(i, (960, 540))
        imgs[n] = i

    for name, img in imgs.iteritems():
        for scene, tmpl in scenes.iteritems():
            res = cv2.matchTemplate(img, tmpl, cv2.TM_CCOEFF_NORMED)
            min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
            if max_val < 0.6:
                continue
            x, y = max_loc
            h, w = tmpl.shape
            cv2.rectangle(img, (x, y), (x+w, y+h), 255, 2)
            print name, scene, max_val, min_val
            cv2.imshow('found', img)
            cv2.waitKey()
printer_server.py 文件源码 项目:miaomiaoji-tool 作者: ihciah 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def print_image(url):
    global mutex
    img_file = requests.get(url)
    image = np.asarray(bytearray(img_file.content), dtype='uint8')
    im = cv2.imdecode(image, cv2.IMREAD_GRAYSCALE)
    pixels = ImageConverter.im2bmp(im)
    mutex.acquire()
    try:
        mmj = BtManager("69:68:63:69:61:68")
        if mmj.connected:
            stop = int(time.time()) + len(pixels) / 384 / 5
            mmj.sendImageToBt(pixels)
            mmj.disconnect()
            time_to_sleep = stop - int(time.time())
            time.sleep(time_to_sleep if time_to_sleep > 0 else 0)
    finally:
        mutex.release()
data.py 文件源码 项目:CEAL-Medical-Image-Segmentation 作者: marc-gorriz 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def create_train_data():
    """
    Generate training data numpy arrays and save them into the project path
    """

    image_rows = 420
    image_cols = 580

    images = os.listdir(data_path)
    masks = os.listdir(masks_path)
    total = len(images)

    imgs = np.ndarray((total, 1, image_rows, image_cols), dtype=np.uint8)
    imgs_mask = np.ndarray((total, 1, image_rows, image_cols), dtype=np.uint8)

    for image_name in images:
        img = cv2.imread(os.path.join(data_path, image_name), cv2.IMREAD_GRAYSCALE)
        img = cv2.resize(img, (image_rows, image_cols), interpolation=cv2.INTER_CUBIC)
        img = np.array([img])
        imgs[i] = img

    for image_mask_name in masks:
        img_mask = cv2.imread(os.path.join(masks_path, image_mask_name), cv2.IMREAD_GRAYSCALE)
        img_mask = cv2.resize(img_mask, (image_rows, image_cols), interpolation=cv2.INTER_CUBIC)
        img_mask = np.array([img_mask])
        imgs_mask[i] = img_mask

    np.save('imgs_train.npy', imgs)
    np.save('imgs_mask_train.npy', imgs_mask)
utils.py 文件源码 项目:vse 作者: mkpaszkiewicz 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def load_image(filename):
    """Reads an image from file. Image is being converted to grayscale and resized."""
    image = cv2.imread(filename, cv2.IMREAD_GRAYSCALE)
    if image is None:
        raise ImageLoaderError(filename)
    return convert_image(image)
utils.py 文件源码 项目:vse 作者: mkpaszkiewicz 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def load_image_from_buf(buf):
    """Reads an image from a buffer in memory. Image is being converted to grayscale and resized."""
    if len(buf) == 0:
        raise ImageLoaderError()
    image = cv2.imdecode(numpy.frombuffer(buf, numpy.uint8), cv2.IMREAD_GRAYSCALE)
    if image is None:
        raise ImageLoaderError()
    return convert_image(image)
parameters.py 文件源码 项目:imgProcessor 作者: radjkarl 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _openImage(filename):
        return cv2.imread(filename, 
                        # cv2.IMREAD_ANYDEPTH | 
                        cv2.IMREAD_GRAYSCALE)
imgIO.py 文件源码 项目:imgProcessor 作者: radjkarl 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def imread(img, color=None, dtype=None):
    '''
    dtype = 'noUint', uint8, float, 'float', ...
    '''
    COLOR2CV = {'gray': cv2.IMREAD_GRAYSCALE,
                'all': cv2.IMREAD_COLOR,
                None: cv2.IMREAD_ANYCOLOR
                }
    c = COLOR2CV[color]
    if callable(img):
        img = img()
    elif isinstance(img, string_types):
        #         from_file = True
        #         try:
        #             ftype = img[img.find('.'):]
        #             img = READERS[ftype](img)[0]
        #         except KeyError:
        # open with openCV
        # grey - 8 bit
        if dtype in (None, "noUint") or np.dtype(dtype) != np.uint8:
            c |= cv2.IMREAD_ANYDEPTH
        img2 = cv2.imread(img, c)
        if img2 is None:
            raise IOError("image '%s' is not existing" % img)
        img = img2

    elif color == 'gray' and img.ndim == 3:  # multi channel img like rgb
        # cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #cannot handle float64
        img = toGray(img)
    # transform array to uint8 array due to openCV restriction
    if dtype is not None:
        if isinstance(img, np.ndarray):
            img = _changeArrayDType(img, dtype, cutHigh=False)

    return img
ImageWithOpenCV.py 文件源码 项目:dataArtist 作者: radjkarl 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def open(self, filename):
        p = self.preferences
        # open in 8 bit?
        if p.p8bit.value():
            col = 0
        else:
            col = cv2.IMREAD_ANYDEPTH
        if p.pGrey.value() and not p.pSplitColors.value():
            col = col | cv2.IMREAD_GRAYSCALE
        else:
            col |= cv2.IMREAD_ANYCOLOR

        # OPEN
        img = cv2.imread(str(filename), col)  # cv2.IMREAD_UNCHANGED)
        if img is None:
            raise Exception("image '%s' doesn't exist" % filename)

        # crop
        if p.pCrop.value():
            r = (p.pCropX0.value(),
                 p.pCropX1.value(),
                 p.pCropY0.value(),
                 p.pCropY1.value())
            img = img[r[0]:r[1], r[2]:r[3]]

        # resize
        if p.pResize.value():
            img = cv2.resize(img, (p.pResizeX.value(), p.pResizeY.value()))

        labels = None
        if img.ndim == 3:
            if p.pSplitColors.value():
                img = np.transpose(img, axes=(2, 0, 1))
                labels = ['blue', 'green', 'red']
            else:
                # rgb convention
                img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

        # change data type to float
        img = self.toFloat(img)
        return img, labels
datasets.py 文件源码 项目:Pytorch-Deeplab 作者: speedinghzl 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __getitem__(self, index):
        datafiles = self.files[index]
        image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR)
        label = cv2.imread(datafiles["label"], cv2.IMREAD_GRAYSCALE)
        size = image.shape
        name = datafiles["name"]
        if self.scale:
            image, label = self.generate_scale_label(image, label)
        image = np.asarray(image, np.float32)
        image -= self.mean
        img_h, img_w = label.shape
        pad_h = max(self.crop_h - img_h, 0)
        pad_w = max(self.crop_w - img_w, 0)
        if pad_h > 0 or pad_w > 0:
            img_pad = cv2.copyMakeBorder(image, 0, pad_h, 0, 
                pad_w, cv2.BORDER_CONSTANT, 
                value=(0.0, 0.0, 0.0))
            label_pad = cv2.copyMakeBorder(label, 0, pad_h, 0, 
                pad_w, cv2.BORDER_CONSTANT,
                value=(self.ignore_label,))
        else:
            img_pad, label_pad = image, label

        img_h, img_w = label_pad.shape
        h_off = random.randint(0, img_h - self.crop_h)
        w_off = random.randint(0, img_w - self.crop_w)
        # roi = cv2.Rect(w_off, h_off, self.crop_w, self.crop_h);
        image = np.asarray(img_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32)
        label = np.asarray(label_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32)
        #image = image[:, :, ::-1]  # change to BGR
        image = image.transpose((2, 0, 1))
        if self.is_mirror:
            flip = np.random.choice(2) * 2 - 1
            image = image[:, :, ::flip]
            label = label[:, ::flip]

        return image.copy(), label.copy(), np.array(size), name
__init__.py 文件源码 项目:Pytorch-Deeplab 作者: speedinghzl 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __getitem__(self, index):
        datafiles = self.files[index]

        image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR)
        label = cv2.imread(datafiles["label"], cv2.IMREAD_GRAYSCALE)
        size = image.shape
        name = datafiles["name"]

        if self.scale:
            image, label = self.generate_scale_label(image, label)

        image = np.asarray(image, np.float32)
        image -= self.mean
        img_h, img_w = label.shape
        pad_h = max(self.crop_h - img_h, 0)
        pad_w = max(self.crop_w - img_w, 0)
        if pad_h > 0 or pad_w > 0:
            img_pad = cv2.copyMakeBorder(image, 0, pad_h, 0, 
                pad_w, cv2.BORDER_CONSTANT, 
                value=(0.0, 0.0, 0.0))
            label_pad = cv2.copyMakeBorder(label, 0, pad_h, 0, 
                pad_w, cv2.BORDER_CONSTANT,
                value=(self.ignore_label,))
        else:
            img_pad, label_pad = image, label
        img_h, img_w = label_pad.shape

        h_off = random.randint(0, img_h - self.crop_h)
        w_off = random.randint(0, img_w - self.crop_w)

        # roi = cv2.Rect(w_off, h_off, self.crop_w, self.crop_h);
        image = np.asarray(img_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32)
        label = np.asarray(label_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32)
        #image = image[:, :, ::-1]  # change to BGR
        image = image.transpose((2, 0, 1))
        if self.is_mirror:
            flip = np.random.choice(2) * 2 - 1
            image = image[:, :, ::flip]
            label = label[:, ::flip]

        return image.copy(), label.copy(), np.array(size), name
util.py 文件源码 项目:VAE_GAN 作者: takat0m0 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_figs(dir_name):
    ret = []
    for file_name in os.listdir(dir_name):
        #tmp = cv2.imread(os.path.join(dir_name, file_name), cv2.IMREAD_GRAYSCALE)
        #tmp = np.reshape(tmp, (64, 64, 1))
        tmp = cv2.imread(os.path.join(dir_name, file_name))
        ret.append(tmp/127.5 - 1.0)
    return np.asarray(ret, dtype = np.float32)
deal_code.py 文件源码 项目:LoginSimulation 作者: Byshx 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _deal_image_(self):
        img = cv2.imread(self.totalpath, cv2.IMREAD_GRAYSCALE)
        img = self._remove_line_(img)
        result = self._split_word_(img)
        # ??????????????????
        if len(result) == 0:
            print '???????...'
            while len(result) == 0:
                if self._generate_image_():
                    img, result = self._deal_image_()
            print '?????????'
        return img, result
identify_code.py 文件源码 项目:LoginSimulation 作者: Byshx 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _get_data_(num, pic_dict=path):
    # ???????
    imgdata = []
    labeldata = []
    # ?????
    checkcount = 50
    nowcount = 0

    # ???????????
    class Getoutofloop(Exception):
        pass

    try:
        while True:
            for root, dirs, files in os.walk(pic_dict):
                for dir in dirs:
                    for img in os.walk(os.path.join(root, dir)):
                        for imagename in img[2]:
                            if random.randint(0, 80) < 2:
                                image = cv2.imread(str(img[0]) + '/' + str(imagename), cv2.IMREAD_GRAYSCALE)
                                image = image.astype(np.float32)
                                image = np.multiply(image, 1.0 / 255.0)
                                imgdata.append(np.ravel(image))
                                tmplabel = img[0]
                                tmplabel = tmplabel[len(tmplabel) - 1]
                                labeldata.append(tmplabel)
                                nowcount += 1
                                if nowcount == checkcount:
                                    raise Getoutofloop()
                            else:
                                continue
    except Getoutofloop:
        pass
    imgdata = np.array(imgdata)
    labeldata = dc._one_hot_(np.array(labeldata))
    return imgdata, labeldata


# TensorFlow????
ImageUtils.py 文件源码 项目:NNProject_DeepMask 作者: abbypa 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def prepare_expected_mask(mask_path):
    im = cv2.resize(cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE), (output_mask_size, output_mask_size)).astype(np.float32)
    # replace visible color with 1 (actual mask)
    im[im > 0] = 1
    # 0 -> -1
    im[im == 0] = -1
    return im
train_crnn.py 文件源码 项目:CNN-LSTM-CTC-text-recognition 作者: oyxhust 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __iter__(self):
        #print('iter')
        init_state_names = [x[0] for x in self.init_states]
        for k in range(self.count):
            data = []
            label = []
            for i in range(self.batch_size):
                img_name = self.image_set_index[i + k*self.batch_size]
                img = cv2.imread(os.path.join(self.data_path, img_name + '.jpg'), cv2.IMREAD_GRAYSCALE)
                #img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
                img = cv2.resize(img, self.data_shape)
                img = img.reshape((1, data_shape[1], data_shape[0]))
                #print(img)
                #img = img.transpose(1, 0)
                #img = img.reshape((data_shape[0] * data_shape[1]))
                img = np.multiply(img, 1/255.0)
                #print(img)
                data.append(img)
                ret = np.zeros(self.num_label, int)
                plate_str = self.gt[int(img_name)]
                #print(plate_str)
                for number in range(len(plate_str)):
                    ret[number] = self.classes.index(plate_str[number]) + 1
                #print(ret)
                label.append(ret)

            data_all = [mx.nd.array(data)] + self.init_state_arrays
            label_all = [mx.nd.array(label)]
            data_names = ['data'] + init_state_names
            label_names = ['label']


            data_batch = SimpleBatch(data_names, data_all, label_names, label_all)
            yield data_batch


问题


面经


文章

微信
公众号

扫码关注公众号