python类IMREAD_GRAYSCALE的实例源码

triangle-detect.py 文件源码 项目:illumeme 作者: josmcg 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def find_triangles(filename):
    FIRST = 0
    RED = (0, 0, 255)
    THICKNESS = 3
    copy = img = cv2.imread(filename)
    grey_img = cv2.imread(file_name, cv2.IMREAD_GRAYSCALE)
    ret, thresh = cv2.threshold(grey_img, 127, 255, 1)
    contours, h = cv2.findContours(thresh, 1, 2)
    largest = None
    for contour in countours:
        approx = cv2.approxPolyDP(contour,0.01*cv2.arcLength(contour,True),True)
        if len(approx) == 3:
            #triangle found
            if largest is None or cv2.contourArea(contour) > cv2.contourArea(largest):
                largest = contour

    #write file
    cv2.drawContours(copy, [largest], FIRST, RED, THICKNESS)
    cv2.imwrite(filename +"_result", copy)
recognize_line.py 文件源码 项目:WeiQiRecognition 作者: JDython 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def lineRecognizer(path):
    '''
    :param path ????????
    :returns lines_data ?????????resize_pic ??????
    '''
    img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
    resize_pic=img
    #resize_pic=cv2.resize(img,(640,480),interpolation=cv2.INTER_CUBIC)
    edges = cv2.Canny(resize_pic,50,150)
    lines_data = cv2.HoughLines(edges,1,np.pi/180,150)
    return lines_data,resize_pic
download_images.py 文件源码 项目:garden.facelock 作者: kivy-garden 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def store_raw_images():
    '''To download images from image-net
        (Change the url for different needs of cascades)
    '''
    neg_images_link = 'http://image-net.org/api/text/imagenet.synset.geturls?wnid=n07942152'
    neg_image_urls = urllib2.urlopen(neg_images_link).read().decode()

    pic_num = 1

    for i in neg_image_urls.split('\n'):
        try:

            print i
            urllib.urlretrieve(i, "neg/" + str(pic_num) + '.jpg')
            img = cv2.imread("neg/" + str(pic_num) +'.jpg',
                                cv2.IMREAD_GRAYSCALE)
            resized_image = cv2.resize(img, (100, 100))
            cv2.imwrite("neg/" + str(pic_num) + '.jpg', resized_image)
            pic_num = pic_num + 1

        except:
            print "error"
FeatureExtraction.py 文件源码 项目:SummerProject_MacularDegenerationDetection 作者: WDongYuan 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def GetFeature(image_path):
    #MinBlackRate, left_most_pixel_gradiant,  hill_number, average_hill_peak, average_hill_valley, BlackRate
    boundary_path = image_path.split(".")[0]+"_upper_boundary.txt"
    file = open(boundary_path)
    tmp_str = file.readline().strip()
    tmp_arr = tmp_str.split(" ")
    boundary = []
    for i in range(len(tmp_arr)):
        if tmp_arr[i]!="":
            boundary.append(int(tmp_arr[i]))
    boundary = np.array(boundary)
    file.close()
    image = cv2.imread(image_path,cv2.IMREAD_GRAYSCALE)
    image = CropLowerBoundary(image)

    feature = MinGridBlackRate(image,boundary)+BlackRate(image,boundary)
    flag,tmp_feature = CountHill(boundary,image)
    if flag==False:
        return [False,feature]
    feature += tmp_feature
    return [True,feature]
helpers.py 文件源码 项目:TC-Lung_nodules_detection 作者: Shicoder 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def load_cube_img(src_path, rows, cols, size):
    img = cv2.imread(src_path, cv2.IMREAD_GRAYSCALE)
    # assert rows * size == cube_img.shape[0]
    # assert cols * size == cube_img.shape[1]
    res = numpy.zeros((rows * cols, size, size))

    img_height = size
    img_width = size

    for row in range(rows):
        for col in range(cols):
            src_y = row * img_height
            src_x = col * img_width
            res[row * cols + col] = img[src_y:src_y + img_height, src_x:src_x + img_width]

    return res
parser.py 文件源码 项目:rosreestr2coord 作者: rendrom 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_image_xy_corner(self):
        """get ?artesian coordinates from raster"""
        import cv2

        if not self.image_path:
            return False
        image_xy_corners = []
        img = cv2.imread(self.image_path, cv2.IMREAD_GRAYSCALE)
        imagem = (255 - img)

        try:
            ret, thresh = cv2.threshold(imagem, 10, 128, cv2.THRESH_BINARY)
            try:
                contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            except Exception:
                im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)

            hierarchy = hierarchy[0]
            hierarhy_contours = [[] for _ in range(len(hierarchy))]
            for fry in range(len(contours)):
                currentContour = contours[fry]
                currentHierarchy = hierarchy[fry]
                cc = []
                # epsilon = 0.0005 * cv2.arcLength(contours[len(contours) - 1], True)
                approx = cv2.approxPolyDP(currentContour, self.epsilon, True)
                if len(approx) > 2:
                    for c in approx:
                        cc.append([c[0][0], c[0][1]])
                    parent_index = currentHierarchy[3]
                    index = fry if parent_index < 0 else parent_index
                    hierarhy_contours[index].append(cc)

            image_xy_corners = [c for c in hierarhy_contours if len(c) > 0]
            return image_xy_corners
        except Exception as ex:
            self.error(ex)
        return image_xy_corners
train.py 文件源码 项目:unet-tensorflow 作者: timctho 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def valid_generator():
    while True:
        for start in range(0, len(ids_valid_split), batch_size):
            x_batch = []
            y_batch = []
            end = min(start + batch_size, len(ids_valid_split))
            ids_valid_batch = ids_valid_split[start:end]
            for id in ids_valid_batch.values:
                img = cv2.imread('D:\Datasets_HDD\Carvana\\train\\{}.jpg'.format(id))
                img = cv2.resize(img, (input_size, input_size))
                mask = cv2.imread('D:\Datasets_HDD\Carvana\\output_masks\\{}_mask.png'.format(id), cv2.IMREAD_GRAYSCALE)
                mask = cv2.resize(mask, (input_size, input_size))
                mask = np.expand_dims(mask, axis=2)
                x_batch.append(img)
                y_batch.append(mask)
            x_batch = np.array(x_batch, np.float32) / 255
            y_batch = np.array(y_batch, np.float32) / 255
            yield x_batch, y_batch
simplifier2.py 文件源码 项目:SketchSimplification 作者: La4La 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def read_img(path, s_size):
    image1 = cv2.imread(path, cv2.IMREAD_GRAYSCALE)

    if image1.shape[0] < image1.shape[1]:
        s0 = s_size
        s1 = int(image1.shape[1] * (s_size / image1.shape[0]))
        s1 = s1 - s1 % 16
    else:
        s1 = s_size
        s0 = int(image1.shape[0] * (s_size / image1.shape[1]))
        s0 = s0 - s0 % 16

    image1 = np.asarray(image1, np.float32)
    image1 = cv2.resize(image1, (s1, s0), interpolation=cv2.INTER_AREA)

    if image1.ndim == 2:
        image1 = image1[:, :, np.newaxis]

    return image1.transpose(2, 0, 1), False
simplifier1.py 文件源码 项目:SketchSimplification 作者: La4La 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def read_img(path, s_size):
    image1 = cv2.imread(path, cv2.IMREAD_GRAYSCALE)

    if image1.shape[0] < image1.shape[1]:
        s0 = s_size
        s1 = int(image1.shape[1] * (s_size / image1.shape[0]))
        s1 = s1 - s1 % 16
    else:
        s1 = s_size
        s0 = int(image1.shape[0] * (s_size / image1.shape[1]))
        s0 = s0 - s0 % 16

    image1 = np.asarray(image1, np.float32)
    image1 = cv2.resize(image1, (s1, s0), interpolation=cv2.INTER_AREA)

    if image1.ndim == 2:
        image1 = image1[:, :, np.newaxis]

    return image1.transpose(2, 0, 1), False
compare.py 文件源码 项目:SketchSimplification 作者: La4La 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def read_img(path, s_size):
    image1 = cv2.imread(path, cv2.IMREAD_GRAYSCALE)

    if image1.shape[0] < image1.shape[1]:
        s0 = s_size
        s1 = int(image1.shape[1] * (s_size / image1.shape[0]))
        s1 = s1 - s1 % 16
    else:
        s1 = s_size
        s0 = int(image1.shape[0] * (s_size / image1.shape[1]))
        s0 = s0 - s0 % 16

    image1 = np.asarray(image1, np.float32)
    image1 = cv2.resize(image1, (s1, s0), interpolation=cv2.INTER_AREA)

    if image1.ndim == 2:
        image1 = image1[:, :, np.newaxis]

    return image1.transpose(2, 0, 1), False
data.py 文件源码 项目:ultrasound-nerve-segmentation 作者: EdwardTyantov 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def create_test_data():
    train_data_path = os.path.join(data_path, 'test')
    images = os.listdir(train_data_path)
    total = len(images)

    imgs = np.ndarray((total, 1, image_rows, image_cols), dtype=np.uint8)
    imgs_id = np.ndarray((total, ), dtype=np.int32)

    i = 0
    print('Creating test images...')
    for image_name in images:
        img_id = int(image_name.split('.')[0])
        img = cv2.imread(os.path.join(train_data_path, image_name), cv2.IMREAD_GRAYSCALE)

        imgs[i, 0] = img
        imgs_id[i] = img_id

        if i % 100 == 0:
            print('Done: {0}/{1} images'.format(i, total))
        i += 1
    print('Loading done.')

    np.save(img_test_path, imgs)
    np.save(img_test_id_path, imgs_id)
    print('Saving to .npy files done.')
Nerve.py 文件源码 项目:Nerve-Segmentation 作者: matthewzhou 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def find_best_mask():
    #adjust file path for raw data directory
    files = glob.glob(os.path.join("/Users/matthewzhou/Desktop/Nerve/P5_Submission_Folder/", "raw", "trainsample", "*_mask.tif"))
    overall_mask = cv2.imread(files[0], cv2.IMREAD_GRAYSCALE)
    overall_mask.fill(0)
    overall_mask = overall_mask.astype(np.float32)

    for fl in files:
        mask = cv2.imread(fl, cv2.IMREAD_GRAYSCALE)
        overall_mask += mask
    overall_mask /= 255
    max_value = overall_mask.max()
    koeff = 0.5
    #if the overall_mask pixel value is 
    overall_mask[overall_mask < koeff * max_value] = 0
    overall_mask[overall_mask >= koeff * max_value] = 255
    overall_mask = overall_mask.astype(np.uint8)
    return overall_mask
facerec.py 文件源码 项目:faceRecognitionforRaspPi 作者: mgudesblatart 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def read_images (path, sz=None):
        c = 0
        X,y = [], []
        for dirname, dirnames, filenames in os.walk(path):
            for subdirname in dirnames:
                subject_path = os.path.join(dirname, subdirname)
                for filename in os.listdir(subject_path):
                    try:
                        if (filename == ".drectory"):
                            continue
                        filepath = os.path.join(subject_path, filename)
                        im = cv2.imread(os.path.join(subject_path, filename), cv2.IMREAD_GRAYSCALE)

                        if (sz is not None):
                                im = cv2.resize(im, sz)
                        X.append(np.asarray(im, dtype=np.uint8))
                        y.append(c)
                    except IOError, (errno, strerror):
                            print "I/O error({0}): {1}".format(errno,strerror)
                    except:
                            print "Unexpected error:", sys.exec_info()[0]
                            raise
                c= c+1

        return [X,y]
train.py 文件源码 项目:Kaggle-Carvana-Image-Masking-Challenge 作者: petrosgk 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def valid_generator():
    while True:
        for start in range(0, len(ids_valid_split), batch_size):
            x_batch = []
            y_batch = []
            end = min(start + batch_size, len(ids_valid_split))
            ids_valid_batch = ids_valid_split[start:end]
            for id in ids_valid_batch.values:
                img = cv2.imread('input/train/{}.jpg'.format(id))
                img = cv2.resize(img, (input_size, input_size))
                mask = cv2.imread('input/train_masks/{}_mask.png'.format(id), cv2.IMREAD_GRAYSCALE)
                mask = cv2.resize(mask, (input_size, input_size))
                mask = np.expand_dims(mask, axis=2)
                x_batch.append(img)
                y_batch.append(mask)
            x_batch = np.array(x_batch, np.float32) / 255
            y_batch = np.array(y_batch, np.float32) / 255
            yield x_batch, y_batch
helpers.py 文件源码 项目:kaggle_ndsb2017 作者: juliandewit 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def load_cube_img(src_path, rows, cols, size):
    img = cv2.imread(src_path, cv2.IMREAD_GRAYSCALE)
    # assert rows * size == cube_img.shape[0]
    # assert cols * size == cube_img.shape[1]
    res = numpy.zeros((rows * cols, size, size))

    img_height = size
    img_width = size

    for row in range(rows):
        for col in range(cols):
            src_y = row * img_height
            src_x = col * img_width
            res[row * cols + col] = img[src_y:src_y + img_height, src_x:src_x + img_width]

    return res
ImageResizer.py 文件源码 项目:main 作者: templerobotics 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def pos_images():

        #Edit this for new path of positive imges

        pos_path = '/path/folder'

        files = [f for f in listdir(pos_path) if isfile(join(pos_path,f)) ]

        #empty array with the size of the amount of files we have
        images = numpy.empty(len(files), dtype=object)

        pos_num = 1


        #cycle throw positives
        for n in range(0, len(files)):
          img[n] = cv2.imread( join(pos_path,files[n]),cv2.IMREAD_GRAYSCALE)
          img_resize = cv2.resize(img[n], (45, 45))
          cv2.imwrite("pos/"+str(pos_num)+".jpg",img_resize)
          pos_num+=1


    #Use to pull and resize negative images from image-net
ImageResizer.py 文件源码 项目:main 作者: templerobotics 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def store_neg_images():
        neg_images_link = 'image-net url for negative images'   
        neg_image_urls = urllib.request.urlopen(neg_images_link).read().decode()
        #pic_num stands for picture index on the repo
        pic_num = 1

        if not os.path.exists('neg'):
            os.makedirs('neg')

        for i in neg_image_urls.split('\n'):
            try:
                print(i)
                urllib.request.urlretrieve(i, "neg/"+str(pic_num)+".jpg")
                neg_img = cv2.imread("neg/"+str(pic_num)+".jpg",cv2.IMREAD_GRAYSCALE)
                # should be larger than samples / pos pic (so we can place our image on it)
                neg_resize = cv2.resize(img, (100, 100))
                cv2.imwrite("neg/"+str(pic_num)+".jpg",neg_resize)
                pic_num += 1

            except Exception as e:
                print(str(e))
test_start_direction.py 文件源码 项目:Robo-Plot 作者: JackBuck 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def startDirectionTest(self, filename_without_extension):
        # Load image
        image = cv2.imread(os.path.join(self.path_to_test_data, filename_without_extension + '.jpg'), cv2.IMREAD_GRAYSCALE)
        print(os.path.join(self.path_to_test_data, filename_without_extension + '.jpg'))

        if image is None:
            raise TypeError

        # Start timer
        start_time = time.time()

        # Process image for start.
        start_direction = image_analysis.find_start_direction(image)

        # Print time taken.
        end_time = time.time()
        print('Time Taken for ' + filename_without_extension + ': ' + str(end_time - start_time))

        return start_direction
roll_handler.py 文件源码 项目:Grand-Order-Reroller 作者: chaosking121 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def identify_summons(image_path):
    import cv2
    import numpy as np

    image = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2GRAY)
    summons = []
    points = 0

    for file_name, (point_value, actual_name) in possible_summons.items():
        template = cv2.imread(os.path.join('screenshots', 'summons', file_name + '.png'), cv2.IMREAD_GRAYSCALE)

        res = cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED)
        loc = np.where(res >= CLOSENESS_THRESHOLD)

        for pt in zip(*loc[::-1]):

            # Due to weird behaviour, only add one instance of each summon
            if actual_name in summons:
                continue
            summons.append(actual_name)
            points += point_value

    return (summons, points)
main.py 文件源码 项目:Grand-Order-Reroller 作者: chaosking121 项目源码 文件源码 阅读 51 收藏 0 点赞 0 评论 0
def image_is_on_screen(template_name):
    template = cv2.imread(os.path.join(
                                'screenshots', 
                                template_name + '.png'), 
                    cv2.IMREAD_GRAYSCALE)
    image = cv2.cvtColor(
                np.array(pyautogui.screenshot(
                        region=(0, 0, 1300, 750))), 
                cv2.COLOR_BGR2GRAY)

    res = cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED)
    loc = np.where(res >= CLOSENESS_THRESHOLD)

    # Not sure why this works but okay
    for pt in zip(*loc[::-1]):
        return True

    return False
app.py 文件源码 项目:async_face_recognition 作者: dpdornseifer 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _cascade_detect(self, raw_image):
        ''' use opencv cascades to recognize objects on the incomming images '''
        cascade = cv2.CascadeClassifier(self._cascade)
        image = np.asarray(bytearray(raw_image), dtype="uint8")

        gray_image = cv2.imdecode(image, cv2.IMREAD_GRAYSCALE)
        color_image = cv2.imdecode(image, cv2.IMREAD_ANYCOLOR)

        coordinates = cascade.detectMultiScale(
            gray_image,
            scaleFactor=1.15,
            minNeighbors=5,
            minSize=(30, 30)
        )

        for (x, y, w, h) in coordinates:
            cv2.rectangle(color_image, (x, y), (x + w, y + h), (0, 255, 0), 2)
            self._logger.debug("face recognized at: x: {}, y: {}, w: {}, h: {}".format(x, y, w, h))

        return color_image, self._tojson(coordinates)
test_matting.py 文件源码 项目:closed-form-matting 作者: MarcoForte 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_solution_close_to_original_implementation(self):
        image = cv2.imread('testdata/source.png', cv2.IMREAD_COLOR) / 255.0
        scribles = cv2.imread('testdata/scribbles.png', cv2.IMREAD_COLOR) / 255.0

        alpha = closed_form_matting.closed_form_matting_with_scribbles(image, scribles)
        foreground, background = solve_foreground_background(image, alpha)

        matlab_alpha = cv2.imread('testdata/matlab_alpha.png', cv2.IMREAD_GRAYSCALE) / 255.0
        matlab_foreground = cv2.imread('testdata/matlab_foreground.png', cv2.IMREAD_COLOR) / 255.0
        matlab_background = cv2.imread('testdata/matlab_background.png', cv2.IMREAD_COLOR) / 255.0

        sad_alpha = np.mean(np.abs(alpha - matlab_alpha))
        sad_foreground = np.mean(np.abs(foreground - matlab_foreground))
        sad_background = np.mean(np.abs(background - matlab_background))

        self.assertLess(sad_alpha, 1e-2)
        self.assertLess(sad_foreground, 1e-2)
        self.assertLess(sad_background, 1e-2)
tolmdb.py 文件源码 项目:crnn 作者: wulivicte 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def checkImageIsValid(imageBin):
    if imageBin is None:
        return False
    try:
        imageBuf = np.fromstring(imageBin, dtype=np.uint8)
        img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
        imgH, imgW = img.shape[0], img.shape[1]
    except:
        return False
    else:
        if imgH * imgW == 0:
            return False        
    return True
dataset_readers.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def imread_process_cb(scale=1.0, grayscale=False):
        return lambda fn: im_resize(cv2.imread(fn, cv2.IMREAD_GRAYSCALE if grayscale else cv2.IMREAD_UNCHANGED), scale=scale)
find_edges.py 文件源码 项目:opencv-gui-helper-tool 作者: maunesh 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def main():
    parser = argparse.ArgumentParser(description='Visualizes the line for hough transform.')
    parser.add_argument('filename')

    args = parser.parse_args()

    img = cv2.imread(args.filename, cv2.IMREAD_GRAYSCALE)

    cv2.imshow('input', img)

    edge_finder = EdgeFinder(img, filter_size=13, threshold1=28, threshold2=115)

    print "Edge parameters:"
    print "GaussianBlur Filter Size: %f" % edge_finder.filterSize()
    print "Threshold1: %f" % edge_finder.threshold1()
    print "Threshold2: %f" % edge_finder.threshold2()

    (head, tail) = os.path.split(args.filename)

    (root, ext) = os.path.splitext(tail)

    smoothed_filename = os.path.join("output_images", root + "-smoothed" + ext)
    edge_filename = os.path.join("output_images", root + "-edges" + ext)

    cv2.imwrite(smoothed_filename, edge_finder.smoothedImage())
    cv2.imwrite(edge_filename, edge_finder.edgeImage())

    cv2.destroyAllWindows()
test.py 文件源码 项目:watermark 作者: lishuaijuly 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_blindwm(alg,imgname,wmname,times=1):
    handle = script.dctwm

    if alg == 'DCT':
        handle  = script.dctwm
    if alg == 'DWT':
        handle  = script.dwtwm

    print('\n##############??'+alg+'???????????')

    btime=time.time() 
    for i in range(times):
        img = cv2.imread('./data/'+imgname)
        wm  = cv2.imread('./data/'+wmname,cv2.IMREAD_GRAYSCALE)
        wmd = handle.embed(img,wm)
        outname = './output/'+alg+'_'+imgname

    cv2.imwrite(outname,wmd)
    print('?????????? :{},???? ?{} ?? ,psnr : {}'.format(outname,int((time.time()-btime)*1000/times),psnr(img,wmd)))

    for  k,v in attack_list.items():
        wmd = attack(outname,k)
        cv2.imwrite('./output/attack/'+k+'_'+imgname,wmd)
        btime=time.time() 
        wm  = cv2.imread('./data/'+wmname,cv2.IMREAD_GRAYSCALE)
        sim = handle.extract(wmd,wm) 
        print('{:10} : ???? {}??????????{} ,???{} ??.'.format(v,'??' if sim>0.7 else '??'  ,sim,int((time.time()-btime)*1000)))
convnet_v2.py 文件源码 项目:DogvsCat 作者: aysebilgegunduz 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def read_image(file_path):
    img = cv2.imread(file_path, cv2.IMREAD_COLOR)  # cv2.IMREAD_GRAYSCALE
    if (img.shape[0] >= img.shape[1]):  # height is greater than width
        resizeto = (IMAGE_SIZE, int(round(IMAGE_SIZE * (float(img.shape[1]) / img.shape[0]))));
    else:
        resizeto = (int(round(IMAGE_SIZE * (float(img.shape[0]) / img.shape[1]))), IMAGE_SIZE);

    img2 = cv2.resize(img, (resizeto[1], resizeto[0]), interpolation=cv2.INTER_CUBIC)
    img3 = cv2.copyMakeBorder(img2, 0, IMAGE_SIZE - img2.shape[0], 0, IMAGE_SIZE - img2.shape[1], cv2.BORDER_CONSTANT,
                              0)

    return img3[:, :, ::-1]  # turn into rgb format
helpers.py 文件源码 项目:TC-Lung_nodules_detection 作者: Shicoder 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def load_patient_images(patient_id, base_dir=None, wildcard="*.*", exclude_wildcards=[]):
    if base_dir == None:
        base_dir = settings.LUNA_16_TRAIN_DIR
    src_dir = base_dir + patient_id + "/"
    src_img_paths = glob.glob(src_dir + wildcard)
    for exclude_wildcard in exclude_wildcards:
        exclude_img_paths = glob.glob(src_dir + exclude_wildcard)
        src_img_paths = [im for im in src_img_paths if im not in exclude_img_paths]
    src_img_paths.sort()
    images = [cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) for img_path in src_img_paths]
    images = [im.reshape((1, ) + im.shape) for im in images]
    res = numpy.vstack(images)
    return res
passzbar.py 文件源码 项目:handfontgen 作者: nixeneko 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def main():
    testpic = cv2.imread('canvas.png', cv2.IMREAD_GRAYSCALE)
    bartype, bardata = passzbar(testpic)
    print(bardata.decode('utf-8'))
passpotrace.py 文件源码 项目:handfontgen 作者: nixeneko 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def main():
    testpic = cv2.imread('resources/marker_50.png', cv2.IMREAD_GRAYSCALE)
    print(passpotrace(testpic).decode('utf-8'))


问题


面经


文章

微信
公众号

扫码关注公众号