python类CHAIN_APPROX_SIMPLE的实例源码

cv_utils.py 文件源码 项目:vision 作者: SouthEugeneRoboticsTeam 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_largest(im, n):
    # Find contours of the shape
    major = cv2.__version__.split('.')[0]
    if major == '3':
        _, contours, _ = cv2.findContours(im.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    else:
        contours, _ = cv2.findContours(im.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # Cycle through contours and add area to array
    areas = []
    for c in contours:
        areas.append(cv2.contourArea(c))

    # Sort array of areas by size
    sorted_areas = sorted(zip(areas, contours), key=lambda x: x[0], reverse=True)

    if sorted_areas and len(sorted_areas) >= n:
        # Find nth largest using data[n-1][1]
        return sorted_areas[n - 1][1]
    else:
        return None
Artificial-potential-without-controller.py 文件源码 项目:Artificial-Potential-Field 作者: vampcoder 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def classify(img):
    cimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img2 = cv2.medianBlur(cimg, 13)

    ret, thresh1 = cv2.threshold(cimg, 100, 120, cv2.THRESH_BINARY)
    t2 = copy.copy(thresh1)

    x, y = thresh1.shape
    arr = np.zeros((x, y, 3), np.uint8)
    final_contours = []
    image, contours, hierarchy = cv2.findContours(t2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    #cv2.imshow('image', image)
    #k = cv2.waitKey(0)
    for i in range(len(contours)):
        cnt = contours[i]
        if cv2.contourArea(cnt) > 35000 and cv2.contourArea(cnt) < 15000:
            cv2.drawContours(img, [cnt], -1, [0, 255, 255])
            cv2.fillConvexPoly(arr, cnt, [255, 255, 255])
            final_contours.append(cnt)
    cv2.imshow('arr', arr)
    k = cv2.waitKey(0)
    return arr
Artificial-potential-controller.py 文件源码 项目:Artificial-Potential-Field 作者: vampcoder 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def classify(img):
    cimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img2 = cv2.medianBlur(cimg, 13)

    ret, thresh1 = cv2.threshold(cimg, 100, 120, cv2.THRESH_BINARY)
    t2 = copy.copy(thresh1)

    x, y = thresh1.shape
    arr = np.zeros((x, y, 3), np.uint8)
    final_contours = []
    image, contours, hierarchy = cv2.findContours(t2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    #cv2.imshow('image', image)
    #k = cv2.waitKey(0)
    for i in range(len(contours)):
        cnt = contours[i]
        if cv2.contourArea(cnt) > 3600 and cv2.contourArea(cnt) < 25000:
            cv2.drawContours(img, [cnt], -1, [0, 255, 255])
            cv2.fillConvexPoly(arr, cnt, [255, 255, 255])
            final_contours.append(cnt)
    cv2.imshow('arr', arr)
    k = cv2.waitKey(0)
    return arr
parser.py 文件源码 项目:rosreestr2coord 作者: rendrom 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_image_xy_corner(self):
        """get ?artesian coordinates from raster"""
        import cv2

        if not self.image_path:
            return False
        image_xy_corners = []
        img = cv2.imread(self.image_path, cv2.IMREAD_GRAYSCALE)
        imagem = (255 - img)

        try:
            ret, thresh = cv2.threshold(imagem, 10, 128, cv2.THRESH_BINARY)
            try:
                contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            except Exception:
                im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)

            hierarchy = hierarchy[0]
            hierarhy_contours = [[] for _ in range(len(hierarchy))]
            for fry in range(len(contours)):
                currentContour = contours[fry]
                currentHierarchy = hierarchy[fry]
                cc = []
                # epsilon = 0.0005 * cv2.arcLength(contours[len(contours) - 1], True)
                approx = cv2.approxPolyDP(currentContour, self.epsilon, True)
                if len(approx) > 2:
                    for c in approx:
                        cc.append([c[0][0], c[0][1]])
                    parent_index = currentHierarchy[3]
                    index = fry if parent_index < 0 else parent_index
                    hierarhy_contours[index].append(cc)

            image_xy_corners = [c for c in hierarhy_contours if len(c) > 0]
            return image_xy_corners
        except Exception as ex:
            self.error(ex)
        return image_xy_corners
cv.py 文件源码 项目:Pacbot 作者: HarvardURC 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _detect_bot(self, hsv_image):
        BOT_MIN = np.array([28,8,100], np.uint8)
        BOT_MAX = np.array([32,255,255], np.uint8)

        thresholded_image = cv2.inRange(hsv_image, BOT_MIN, BOT_MAX)
        thresholded_image = cv2.medianBlur(thresholded_image, 15)

        _, contours, hierarchy = cv2.findContours(thresholded_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        if not contours:
            (bot_x, bot_y) = (-1000,-1000)
        else:
            bot = contours[0]
            M = cv2.moments(bot)
            if len(bot) > 2:
                bot_x = int(M['m10']/M['m00'])
                bot_y = int(M['m01']/M['m00'])
            else:
                (bot_x, bot_y) = (-1000,-1000)

        return thresholded_image, (bot_x, bot_y)
api.py 文件源码 项目:histonets-cv 作者: sul-cidr 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def remove_blobs(image, min_area=0, max_area=sys.maxsize, threshold=128,
                 method='8-connected', return_mask=False):
    """Binarize image using threshold, and remove (turn into black)
    blobs of connected pixels of white of size bigger or equal than
    min_area but smaller or equal than max_area from the original image,
    returning it afterward."""
    method = method.lower()
    if method == '4-connected':
        method = cv2.LINE_4
    elif method in ('16-connected', 'antialiased'):
        method = cv2.LINE_AA
    else:  # 8-connected
        method = cv2.LINE_8
    mono_image = binarize_image(image, method='boolean', threshold=threshold)
    _, all_contours, _ = cv2.findContours(mono_image, cv2.RETR_LIST,
                                          cv2.CHAIN_APPROX_SIMPLE)
    contours = np.array([contour for contour in all_contours
                         if min_area <= cv2.contourArea(contour) <= max_area])
    mask = np.ones(mono_image.shape, np.uint8)
    cv2.drawContours(mask, contours, -1, 0, -1, lineType=method)
    return image, 255 * mask
VisionTrackingMk2.py 文件源码 项目:headlights 作者: Team395 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def contourImg(image):
    #Find contours in the image the first and last returns dont matter so the _ is just a placeholder to ignore them
    _, contours, _ = cv2.findContours(image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    #The contouring operation does some weird stuff to the image so this line just fills the whole thing with black
    image.fill(0)
    boundingRect = []
    #Loops through all contours bigger than minArea pixels. That number is tweakable and determined by testing
    for j in [i for i in contours if cv2.contourArea(i) > minArea]:
        #br is a (list/tuple)? of the form x, y, width, height where (x,y) is the (top/bottom)? (left/right)? corner
        br = cv2.boundingRect(j)
        if(abs(br[2]/br[3] - INDASPECT) < indAspectTol and cv2.contourArea(j)/(br[2]*br[3]) > covTol):
            boundingRect.append(br)
    for x in range(0, len(boundingRect)):
        for y in range(x+1, len(boundingRect)):
            i = boundingRect[x]
            j = boundingRect[y]
            if(abs(i[1]-j[1]) < i[3]/2) and abs(abs(i[0]-j[0])/i[1] - GRPASPECT) < grpAspectTol:
                return [createRectCnt(i), createRectCnt(j)]
    return None
VisionTrackingMk2.py 文件源码 项目:headlights 作者: Team395 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def diagContour(image):
     #Find contours in the image the first and last returns dont matter so the _ is just a placeholder to ignore them
    _, contours, _ = cv2.findContours(image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    #The contouring operation does some weird stuff to the image so this line just fills the whole thing with black
    image.fill(0)
    boundingRect = []
    firstFail = []
    #Loops through all contours bigger than minArea pixels. That number is tweakable and determined by testing
    for j in [i for i in contours if cv2.contourArea(i) > minArea]:
        #br is a (list/tuple)? of the form x, y, width, height where (x,y) is the (top/bottom)? (left/right)? corner
        br = cv2.boundingRect(j)
        if(abs(br[2]/br[3] - INDASPECT) < indAspectTol and cv2.contourArea(j)/(br[2]*br[3]) > covTol):
            boundingRect.append(br)
        else:
            firstFail.append([br, br[2]/br[3], cv2.contourArea(j)/(br[2]*br[3])])
    secondRound = []
    for x in range(0, len(boundingRect)):
        for y in range(x+1, len(boundingRect)):
            i = boundingRect[x]
            j = boundingRect[y]
            secondRound.append([(x,y,i,j), (abs(i[1]-j[1]), i[3]/2), abs(i[0]-j[0])/i[1]])
    for x in secondRound:
        if(x[1][0] < x[1][1] and x[2] - GRPASPECT < grpAspectTol):
            return firstFail, secondRound, [createRectCnt(x[0][2]), createRectCnt(x[0][3])]
    return firstFail, secondRound, None
location.py 文件源码 项目:Vehicle-Logo-Recognition 作者: xinyuexy 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def plateDetect(img,img2):
    '''?????????????????'''
    im2, contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    for con in contours:
        x,y,w,h=cv2.boundingRect(con)
        area=w*h
        ratio=w/h
        if ratio>2 and ratio<4 and area>=2000 and area<=25000:
            logo_y1=max(0,int(y-h*3.0))
            logo_y2=y
            logo_x1=x
            logo_x2=x+w
            img_logo=img2.copy()
            logo=img_logo[logo_y1:logo_y2,logo_x1:logo_x2]
            cv2.imwrite('./logo1.jpg',logo)
            cv2.rectangle(img2,(x,y),(x+w,y+h),(255,0,0),2)
            cv2.rectangle(img2,(logo_x1,logo_y1),(logo_x2,logo_y2),(0,255,0),2)
            global plate
            plate=[x,y,w,h]
            #?????????
            return logo
contour_detection.py 文件源码 项目:pictureflow 作者: mentum 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def apply(self, item, threshold):

        img = item.img_mat

        img[img > 0] = 255
        _, contours, _ = cv2.findContours(img, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

        valid_contours = []

        for contour in contours:
            max_x = contour[:, :, 0].max()
            min_x = contour[:, :, 0].min()

            max_y = contour[:, :, 1].max()
            min_y = contour[:, :, 1].min()

            if (max_x - min_x) * (max_y - min_y) > threshold:
                valid_contours.append(contour)

        yield valid_contours
crop_morphology.py 文件源码 项目:PAN-Card-OCR 作者: dilippuri 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def find_components(edges, max_components=16):
    """Dilate the image until there are just a few connected components.

    Returns contours for these components."""
    # Perform increasingly aggressive dilation until there are just a few
    # connected components.
    count = 21
    dilation = 5
    n = 1
    while count > 16:
        n += 1
        dilated_image = dilate(edges, N=3, iterations=n)
        contours, hierarchy = cv2.findContours(dilated_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        count = len(contours)
    #print dilation
    #Image.fromarray(edges).show()
    #Image.fromarray(255 * dilated_image).show()
    return contours
imgProcess_tool.py 文件源码 项目:Farmbot_GeneralAP 作者: SpongeYao 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def findContours(arg_img,arg_canvas, arg_MinMaxArea=False, arg_debug= False):
    image= arg_img.copy()
    #print image
    canvas= arg_canvas.copy()
    if len(image)==3:
        image = cv2.cvtColor(self.image, cv2.COLOR_GRAY2BGR)
    if sys.version_info.major == 2: 
        ctrs, hier = cv2.findContours(image.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    else:
        _, ctrs, hier = cv2.findContours(image.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    if arg_MinMaxArea is not False:
        ctrs = filter(lambda x : arg_MinMaxArea[1]> cv2.contourArea(x) > arg_MinMaxArea[0] , ctrs)

    print '>>> ', len(ctrs)
    for ctr in ctrs:
        print 'Area: ', cv2.contourArea(ctr)
        cv2.drawContours(canvas, [ctr], 0, (0, 128, 255), 3)
    if arg_debug:
        cv2.imwrite('Debug/debug_findContours.jpg',canvas)
    return canvas
class_ImageProcessing.py 文件源码 项目:Farmbot_GeneralAP 作者: SpongeYao 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_contour(self, arg_frame, arg_export_index, arg_export_path, arg_export_filename, arg_binaryMethod):
        # Otsu's thresholding after Gaussian filtering
        tmp = cv2.cvtColor(arg_frame, cv2.COLOR_RGB2GRAY)
        blur = cv2.GaussianBlur(tmp,(5,5),0)
        if arg_binaryMethod== 0:
            ret, thresholdedImg= cv2.threshold(blur.copy() , self.threshold_graylevel, 255 , 0)
        elif arg_binaryMethod == 1:
            ret,thresholdedImg = cv2.threshold(blur.copy(),0 ,255 ,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
        elif arg_binaryMethod== 2:
            thresholdedImg = cv2.adaptiveThreshold(blur.copy(),255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,5,0)

        result = cv2.cvtColor(thresholdedImg, cv2.COLOR_GRAY2RGB)
        ctrs, hier = cv2.findContours(thresholdedImg, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

        ctrs = filter(lambda x : cv2.contourArea(x) > self.threshold_size , ctrs)

        rects = [[cv2.boundingRect(ctr) , ctr] for ctr in ctrs]

        for rect , cntr in rects:
            cv2.drawContours(result, [cntr], 0, (0, 128, 255), 3)
        if arg_export_index:
            cv2.imwrite(arg_export_path+ arg_export_filename+'.jpg', result)
        print "Get Contour success"
        return result
cv2_img_proc.py 文件源码 项目:deep_ocr 作者: JinpengLI 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def do(self, bin_img):

        tmp_bin_img = np.copy(bin_img)

        if cv2.__version__[0] == "2":
            contours, hierarchy = cv2.findContours(
                tmp_bin_img,
                cv2.RETR_TREE,
                cv2.CHAIN_APPROX_SIMPLE)
        else:
            _, contours, hierarchy = cv2.findContours(
                tmp_bin_img,
                cv2.RETR_CCOMP,
                cv2.CHAIN_APPROX_SIMPLE)

        filtered_contours = []
        for cnt in contours:
            x, y, w, h = cv2.boundingRect(cnt)
            if w * h > self.max_area or w * h < self.min_area:
                bin_img[y:y+h, x:x+w] = 0
        contours = filtered_contours
extract_silhouettes.py 文件源码 项目:AMBR 作者: Algomorph 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def draw_silhouette(self, foreground, bin_mask, tracked_object_stats, centroid):
        contours = cv2.findContours(bin_mask, mode=cv2.RETR_LIST, method=cv2.CHAIN_APPROX_SIMPLE)[1]
        for i_contour in range(0, len(contours)):
            cv2.drawContours(foreground, contours, i_contour, (0, 255, 0))
        x1 = tracked_object_stats[cv2.CC_STAT_LEFT]
        x2 = x1 + tracked_object_stats[cv2.CC_STAT_WIDTH]+1
        y1 = tracked_object_stats[cv2.CC_STAT_TOP]
        y2 = y1 + tracked_object_stats[cv2.CC_STAT_HEIGHT]+1
        if SilhouetteExtractor.DRAW_BBOX:
            cv2.rectangle(foreground, (x1, y1), (x2, y2), color=(0, 0, 255))
            cv2.drawMarker(foreground, SilhouetteExtractor.__to_int_tuple(centroid), (0, 0, 255), cv2.MARKER_CROSS, 11)
            bbox_w_h_ratio = tracked_object_stats[cv2.CC_STAT_WIDTH] / tracked_object_stats[cv2.CC_STAT_HEIGHT]
            cv2.putText(foreground, "BBOX w/h ratio: {0:.4f}".format(bbox_w_h_ratio), (x1, y1 - 18),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255))
        if SilhouetteExtractor.SHOW_INTERSECTS:
            if self.intersects_frame_boundary(x1, x2, y1, y2):
                cv2.putText(foreground, "FRAME BORDER INTERSECT DETECTED", (0, 54), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
                            (0, 0, 255))
arch_light_track.py 文件源码 项目:Vision_Processing-2016 作者: Sabercat-Robotics-4146-FRC 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_bounding_rect( cap, win_cap, win, upper, lower):
    msk = cv2.dilate(cv2.erode( cv2.inRange( cv2.blur( cv2.cvtColor( cap, cv2.COLOR_BGR2HSV ), (5,5) ), np.array(lower), np.array(upper) ), None, iterations=3), None, iterations=3)
    im2, contours, hierarchy = cv2.findContours( msk, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE )
    if len(contours) > 0:
        areas = [cv2.contourArea(c) for c in contours] # get the area of each contour
        max_index = np.argmax(areas) # get the index of the largest contour by area
        cnts = contours[max_index] # get the largest contout by area
        cv2.drawContours(msk, [cnts], 0, (0,255,0), 3) # Draw the contours to the mask image
        x,y,w,h = cv2.boundingRect(cnts) #  get the bouding box information about the contour
        cv2.rectangle(win_cap,(x,y),(x+w,y+h),(255,255,255),2) # Draw rectangle on the image to represent the bounding box
        cv2.imshow( "debug.", win_cap )
        try:
            self.smt_dash.putNumber('vis_x', x)
            self.smt_dash.putNumber('vis_y', y)
            self.smt_dash.putNumber('vis_w', w)
            self.smt_dash.putNumber('vis_h', h)
        except Exception:
            pass
image_transformation.py 文件源码 项目:Sign-Language-Recognition 作者: Anmol-Singh-Jaggi 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def draw_contours(frame):
    """
    Draws a contour around white color.
    """
    print("Drawing contour around white color...")

    # 'contours' is a list of contours found.
    contours, _ = cv2.findContours(
        frame, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    # Finding the contour with the greatest area.
    largest_contour_index = find_largest_contour_index(contours)

    # Draw the largest contour in the image.
    cv2.drawContours(frame, contours,
                     largest_contour_index, (255, 255, 255), thickness=-1)

    # Draw a rectangle around the contour perimeter
    contour_dimensions = cv2.boundingRect(contours[largest_contour_index])
    # cv2.rectangle(sign_image,(x,y),(x+w,y+h),(255,255,255),0,8)

    print("Done!")
    return (frame, contour_dimensions)
scan2.py 文件源码 项目:card-scanner 作者: RFVenter 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_contours(image, polydb=0.03, contour_range=5, show=False):
    # find the contours in the edged image, keeping only the largest ones, and initialize the screen contour
    # if cv2version == 3: im2, contours, hierarchy = cv2.findContours(image.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    contours = _findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    cnts = sorted(contours, key = cv2.contourArea, reverse = True)[:contour_range]

    # loop over the contours
    screenCnt = None
    for c in cnts:
        # approximate the contour
        peri = cv2.arcLength(c, True) #finds the Contour Perimeter
        approx = cv2.approxPolyDP(c, polydb * peri, True)

        # if our approximated contour has four points, then we can assume that we have found our screen
        if len(approx) == 4:
            screenCnt = approx
            break

    if screenCnt is None: raise EdgeNotFound()

    # sometimes the algorythm finds a strange non-convex shape. The shape conforms to the card but its not complete, so then just complete the shape into a convex form
    if not cv2.isContourConvex(screenCnt):
        screenCnt = cv2.convexHull(screenCnt)
        x,y,w,h = cv2.boundingRect(screenCnt)
        screenCnt = np.array([[[x, y]], [[x+w, y]], [[x+w, y+h]], [[x, y+h]]])

    if show: #this is for debugging puposes
        new_image = image.copy()
        cv2.drawContours(new_image, [screenCnt], -1, (255, 255, 0), 2)
        cv2.imshow("Contour1 image", new_image)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

    return screenCnt
scan.py 文件源码 项目:card-scanner 作者: RFVenter 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_contours(image, polydb=0.03, contour_range=5, show=False):
    # find the contours in the edged image, keeping only the largest ones, and initialize the screen contour
    if cv2version == 3: im2, contours, hierarchy = cv2.findContours(image.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    cnts = sorted(contours, key = cv2.contourArea, reverse = True)[:contour_range]

    # loop over the contours
    screenCnt = None
    for c in cnts:
        # approximate the contour
        peri = cv2.arcLength(c, True) #finds the Contour Perimeter
        approx = cv2.approxPolyDP(c, polydb * peri, True)

        # if our approximated contour has four points, then we can assume that we have found our screen
        if len(approx) == 4:
            screenCnt = approx
            break

    if screenCnt is None: raise EdgeNotFound()

    # sometimes the algorythm finds a strange non-convex shape. The shape conforms to the card but its not complete, so then just complete the shape into a convex form
    if not cv2.isContourConvex(screenCnt):
        screenCnt = cv2.convexHull(screenCnt)
        x,y,w,h = cv2.boundingRect(screenCnt)
        screenCnt = np.array([[[x, y]], [[x+w, y]], [[x+w, y+h]], [[x, y+h]]])

    if show: #this is for debugging puposes
        new_image = image.copy()
        cv2.drawContours(new_image, [screenCnt], -1, (255, 255, 0), 2)
        cv2.imshow("Contour1 image", new_image)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

    return screenCnt


问题


面经


文章

微信
公众号

扫码关注公众号