python类INTER_CUBIC的实例源码

initial.py 文件源码 项目:Fingerprint-Recognition 作者: zhangzimou 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def ridgeComp(img,theta, blockSize,w=3,h=9,alpha=100,beta=1):
    resize=5
    N,M=np.shape(img)
    imgout=np.zeros_like(img)
    imgresizeize=cv2.resizeize(img,None,fx=resize,fy=resize,interpolation = cv2.INTER_CUBIC)
    mask=np.ones((w,h))*beta
    mask[(w-1)/2]=np.ones((1,h))*alpha
    ww=np.arange(-(w-1)/2,(w-1)/2+1)
    hh=np.arange(-(h-1)/2,(h-1)/2+1)
    hh,ww=np.meshgrid(hh,ww)
    for i in xrange((h-1)/2,N-(h-1)/2):
        block_i=i/blockSize
        for j in xrange((h-1)/2,M-(h-1)/2):
            block_j=j/blockSize
            thetaHere=theta[block_i,block_j]
            ii=np.round((i+ww*np.cos(thetaHere)-hh*np.sin(thetaHere))*resize).astype(np.int32)
            jj=np.round((j+ww*np.sin(thetaHere)+hh*np.cos(thetaHere))*resize).astype(np.int32)
            imgout[i,j]=np.sum(imgresizeize[ii,jj]*mask)/(((w-1)*beta+alpha)*h)
resize.py 文件源码 项目:chainercv 作者: chainer 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _resize(img, size, interpolation):
        img = img.transpose((1, 2, 0))
        if interpolation == PIL.Image.NEAREST:
            cv_interpolation = cv2.INTER_NEAREST
        elif interpolation == PIL.Image.BILINEAR:
            cv_interpolation = cv2.INTER_LINEAR
        elif interpolation == PIL.Image.BICUBIC:
            cv_interpolation = cv2.INTER_CUBIC
        elif interpolation == PIL.Image.LANCZOS:
            cv_interpolation = cv2.INTER_LANCZOS4
        H, W = size
        img = cv2.resize(img, dsize=(W, H), interpolation=cv_interpolation)

        # If input is a grayscale image, cv2 returns a two-dimentional array.
        if len(img.shape) == 2:
            img = img[:, :, np.newaxis]
        return img.transpose((2, 0, 1))
data_agumentation.py 文件源码 项目:pytorch_crowd_count 作者: BingzheWu 项目源码 文件源码 阅读 52 收藏 0 点赞 0 评论 0
def adapt_images_and_densities(images, gts, slice_w = slice_w, slice_h = slice_h):
    out_images = []
    out_gts = []
    for i, img in enumerate(images):
        img_h, img_w, _ = img.shape
        n_slices_h = int(round(img_h/slice_h))
        n_slices_w = int(round(img_w/slice_w))
        new_img_h = float(n_slices_h *slice_h)
        new_img_w = float(n_slices_w*slice_w)
        fx = new_img_w / img_w
        fy = new_img_h/img_h
        out_images.append(cv2.resize(img, None, fx = fx, fy = fy, interpolation = cv2.INTER_CUBIC))
        assert out_images[-1].shape[0]%slice_h == 0 and out_images[-1].shape[1]%slice_w == 0
        if gts is not None:
            out_gts.append(density_resize(gts[i], fx, fy))
    return (out_images, out_gts)
operations.py 文件源码 项目:Smart-Surveillance-System-using-Raspberry-Pi 作者: OmkarPathak 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def resize(images, size=(100, 100)):
    """ Function to resize the number of pixels in an image.

    To achieve a standarized pixel number accros different images, it is
    desirable to make every picture of the same pixel size. By using an OpenCV
    method we increase or reduce the number of pixels accordingly.
    """
    images_norm = []
    for image in images:
        is_color = len(image.shape) == 3
        if is_color:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        # using different OpenCV method if enlarging or shrinking
        if image.shape < size:
            image_norm = cv2.resize(image, size, interpolation=cv2.INTER_AREA)
        else:
            image_norm = cv2.resize(image, size, interpolation=cv2.INTER_CUBIC)
        images_norm.append(image_norm)

    return images_norm
common.py 文件源码 项目:c3d-tensorflow2 作者: chuckcho 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def load_frames(clips_info):
    img_size = (cfg.IMG_RAW_H, cfg.IMG_RAW_W)
    N = len(clips_info)
    data = np.zeros(
        (N, cfg.TIME_S) + img_size + (3,),
        dtype=np.uint8)
    for clip_count, clip_info in enumerate(clips_info):
        video_path, start_frame = clip_info
        clip = np.zeros((cfg.TIME_S, 3) + img_size)
        for frame_count in range(cfg.TIME_S):
            filename = cfg.IMAGE_FORMAT.format(start_frame)
            img = cv2.imread(os.path.join(video_path, filename))
            # in case image was not resized at extraction time
            if img.shape[1:] != img_size:
                img = cv2.resize(
                    img,
                    img_size[::-1],
                    interpolation=cv2.INTER_CUBIC)
            img = img.transpose([2, 0, 1])
            clip[frame_count] = img[np.newaxis, ...]
            start_frame += 1
        clip = clip.transpose([0, 2, 3, 1])
        data[clip_count] = clip[np.newaxis, ...]
    return data
location.py 文件源码 项目:Vehicle-Logo-Recognition 作者: xinyuexy 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def logoDetect(img,imgo):
    '''???????????????'''
    imglogo=imgo.copy()
    img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    img=cv2.resize(img,(2*img.shape[1],2*img.shape[0]),interpolation=cv2.INTER_CUBIC)
    #img=cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,-3)
    ret,img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
    #img=cv2.Sobel(img, cv2.CV_8U, 1, 0, ksize = 9)
    img=cv2.Canny(img,100,200)
    element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
    element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
    img = cv2.dilate(img, element2,iterations = 1)
    img = cv2.erode(img, element1, iterations = 3)
    img = cv2.dilate(img, element2,iterations = 3)

    #????
    im2, contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    tema=0
    result=[]
    for con in contours:
        x,y,w,h=cv2.boundingRect(con)
        area=w*h
        ratio=max(w/h,h/w)
        if area>300 and area<20000 and ratio<2:
            if area>tema:
                tema=area
                result=[x,y,w,h]
                ratio2=ratio
    #?????????????????,??????????
    logo2_X=[int(result[0]/2+plate[0]-3),int(result[0]/2+plate[0]+result[2]/2+3)]
    logo2_Y=[int(result[1]/2+max(0,plate[1]-plate[3]*3.0)-3),int(result[1]/2+max(0,plate[1]-plate[3]*3.0)+result[3]/2)+3]
    cv2.rectangle(img,(result[0],result[1]),(result[0]+result[2],result[1]+result[3]),(255,0,0),2)
    cv2.rectangle(imgo,(logo2_X[0],logo2_Y[0]),(logo2_X[1],logo2_Y[1]),(0,0,255),2)
    print tema,ratio2,result
    logo2=imglogo[logo2_Y[0]:logo2_Y[1],logo2_X[0]:logo2_X[1]]
    cv2.imwrite('./logo2.jpg',logo2)

    return img
chess_detection.py 文件源码 项目:WeiQiRecognition 作者: JDython 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def img_pre_treatment(file_path):
    im = cv2.imread(file_path)
    resize_pic=cv2.resize(im,(640,480),interpolation=cv2.INTER_CUBIC)
    resize_pic = cv2.GaussianBlur(resize_pic,(5,5),0)
    cv2.imwrite('static/InterceptedIMG/resize.jpg',resize_pic)
    kernel = np.ones((3,3),np.uint8)
    resize_pic = cv2.erode(resize_pic,kernel,iterations = 3)
    resize_pic = cv2.dilate(resize_pic,kernel,iterations = 3)
    cv2.imshow('image',resize_pic)
    k = cv2.waitKey(0) & 0xFF
    if k == 27:
        cv2.destroyAllWindows()
    gray = cv2.cvtColor(resize_pic,cv2.COLOR_BGR2GRAY)
    ret, binary = cv2.threshold(gray,90,255,cv2.THRESH_BINARY)
    cv2.imshow('image',binary)
    k = cv2.waitKey(0) & 0xFF
    if k == 27:
        cv2.destroyAllWindows()
    return resize_pic,binary
common.py 文件源码 项目:ppap_detect 作者: ashitani 项目源码 文件源码 阅读 61 收藏 0 点赞 0 评论 0
def rotate_image(img_src, angle,scale ,crop=True):
    img_src,size_dest= pad_image(img_src,scale)

    size = tuple(np.array([img_src.shape[1], img_src.shape[0]]))
    org_h=size[1]
    org_w=size[0]

    src_r = np.sqrt((size[0]/2.0)**2+(size[1]/2.0)**2)
    org_angle =np.arctan(float(org_h)/org_w)

    dest_h = size_dest[0]
    dest_w = size_dest[1]

    center = tuple(np.array([img_src.shape[1] * 0.5, img_src.shape[0] * 0.5]))

    dsize= (dest_w,dest_h)
    rotation_matrix = cv2.getRotationMatrix2D(center, angle, scale)
    img_rot = cv2.warpAffine(img_src, rotation_matrix, size, flags=cv2.INTER_CUBIC)

    if crop:
        x,y,w,h = cv2.boundingRect(img_rot[:,:,3])
        return img_rot[y:y+h, x:x+w,:]
    else:
        return img_rot
create_dataset.py 文件源码 项目:ppap_detect 作者: ashitani 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def rotate_image(img_src, angle,scale ):
    img_src,size_dest= pad_image(img_src,scale)

    size = tuple(np.array([img_src.shape[1], img_src.shape[0]]))
    org_h=size[1]
    org_w=size[0]

    src_r = np.sqrt((size[0]/2.0)**2+(size[1]/2.0)**2)
    org_angle =np.arctan(float(org_h)/org_w)

    dest_h = size_dest[0]
    dest_w = size_dest[1]

    center = tuple(np.array([img_src.shape[1] * 0.5, img_src.shape[0] * 0.5]))

    dsize= (dest_w,dest_h)
    rotation_matrix = cv2.getRotationMatrix2D(center, angle, scale)
    img_rot = cv2.warpAffine(img_src, rotation_matrix, size, flags=cv2.INTER_CUBIC)

    x,y,w,h = cv2.boundingRect(img_rot[:,:,3])
    return img_rot[y:y+h, x:x+w,:]
mixin.py 文件源码 项目:Sleep-Early 作者: AliNL 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def match_all(self, pattern, threshold=None):
        pattern = self.pattern_open(pattern)
        search_img = pattern.image

        pattern_scale = self._cal_scale(pattern)
        if pattern_scale != 1.0:
            search_img = cv2.resize(search_img, (0, 0),
                                    fx=pattern_scale, fy=pattern_scale,
                                    interpolation=cv2.INTER_CUBIC)

        threshold = threshold or pattern.threshold or self.image_match_threshold

        screen = self.region_screenshot()
        screen = imutils.from_pillow(screen)
        points = ac.find_all_template(screen, search_img, threshold=threshold, maxcnt=10)
        return points
utils.py 文件源码 项目:nn-compression 作者: anithapk 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def load_image(path):
    # load image
    nImgs = len(path)
    rImg = np.zeros([nImgs,224,224,3])
    for i in range(nImgs):
        img = cv2.imread(path[i])
        img = img / 255.0
        assert (0 <= img).all() and (img <= 1.0).all()
        # print "Original Image Shape: ", img.shape
        # we crop image from center
        short_edge = min(img.shape[:2])
        yy = int((img.shape[0] - short_edge) / 2)
        xx = int((img.shape[1] - short_edge) / 2)
        crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
        # resize to 224, 224
        resized_img = cv2.resize(img,(224,224),interpolation = cv2.INTER_CUBIC) #skimage.transform.resize(crop_img, (224, 224))
        rImg[i] = resized_img
    return rImg

# returns the top1 string
SuironIO.py 文件源码 项目:suiron 作者: kendricktan 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def get_frame_prediction(self):
        ret, frame = self.cap.read()

        # if we get a frame
        if not ret:
            raise IOError('No image found!')

        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_CUBIC)
        frame = frame.astype('uint8')

        return frame


    # Normalizes inputs so we don't have to worry about weird
    # characters e.g. \r\n
opencv_functions.py 文件源码 项目:emotion-conv-net 作者: GautamShine 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def addEmoji(img,faces,emoji):
  for x,y,w,h in faces:
    # Resize emoji to desired width and height
    dim = max(w,h)
    em = cv.resize(emoji, (dim,dim), interpolation = cv.INTER_CUBIC)

    # Get boolean for transparency
    trans = em.copy()
    trans[em == 0] = 1
    trans[em != 0] = 0

    # Delete all pixels in image where emoji is nonzero
    img[y:y+h,x:x+w,:] *= trans

    # Add emoji on those pixels
    img[y:y+h,x:x+w,:] += em

  return img

# Add emojis to image at specified points and sizes
# Inputs: img is ndarrays of WxHx3
#         emojis is a list of WxHx3 emoji arrays
#         faces is a list of (x,y,w,h) tuples for each face to be replaced
#         Labels is a list of integer labels for each emotion
processing.py 文件源码 项目:Ultras-Sound-Nerve-Segmentation---Kaggle 作者: Simoncarbo 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def preprocessing_imgs(train_imgs, reduced_size = None):
    # resizing    
    if reduced_size is not None:
        train_imgs_p = np.ndarray((train_imgs.shape[0], train_imgs.shape[1]) + reduced_size, dtype=np.float32)
        for i in range(train_imgs.shape[0]):
            train_imgs_p[i, 0] = cv2.resize(train_imgs[i, 0], (reduced_size[1], reduced_size[0]), interpolation=cv2.INTER_CUBIC) # INVERSE ORDER! cols,rows
    else:
        train_imgs_p = train_imgs.astype(np.float32)

    # ZMUV normalization
    m = np.mean(train_imgs_p).astype(np.float32)
    train_imgs_p -= m
    st = np.std(train_imgs_p).astype(np.float32)
    train_imgs_p /= st

    return train_imgs_p,m,st
EES.py 文件源码 项目:EEDS-keras 作者: MarkPrecursor 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def vilization_and_show():
    model = model_EES16()
    model.load_weights("EES_check.h5")
    IMG_NAME = "comic.bmp"
    INPUT_NAME = "input.jpg"

    img = cv2.imread(IMG_NAME)
    shape = img.shape
    img = cv2.resize(img, (shape[1] / 2, shape[0] / 2), cv2.INTER_CUBIC)
    cv2.imwrite(INPUT_NAME, img)

    img = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb)
    Y = numpy.zeros((1, img.shape[0], img.shape[1], 1))
    Y[0, :, :, 0] = img[:, :, 0]

    feature_map_visilization(model, Y)
sudoku_steps.py 文件源码 项目:pyku 作者: dubvulture 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def save_hough(self, lines, clmap):
        """
        :param lines: (rho, theta) pairs
        :param clmap: clusters assigned to lines
        :return: None
        """
        height, width = self.image.shape
        ratio = 600. * (self.step+1) / min(height, width)
        temp = cv2.resize(self.image, None, fx=ratio, fy=ratio,
                          interpolation=cv2.INTER_CUBIC)
        temp = cv2.cvtColor(temp, cv2.COLOR_GRAY2BGR)
        colors = [(0, 127, 255), (255, 0, 127)]

        for i in range(0, np.size(lines) / 2):
            rho = lines[i, 0]
            theta = lines[i, 1]
            color = colors[clmap[i, 0]]
            if theta < np.pi / 4 or theta > 3 * np.pi / 4:
                pt1 = (rho / np.cos(theta), 0)
                pt2 = (rho - height * np.sin(theta) / np.cos(theta), height)
            else:
                pt1 = (0, rho / np.sin(theta))
                pt2 = (width, (rho - width * np.cos(theta)) / np.sin(theta))
            pt1 = (int(pt1[0]), int(pt1[1]))
            pt2 = (int(pt2[0]), int(pt2[1]))
            cv2.line(temp, pt1, pt2, color, 5)

        self.save2image(temp)
rescale_images.py 文件源码 项目:lsun_2017 作者: ternaus 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def downscale(old_file_name):
    img = cv2.imread(os.path.join(old_file_name))

    new_file_name = (old_file_name
                     .replace('training', 'training_new')
                     .replace('validation', 'validation_new')
                     .replace('testing', 'testing_new')
                     )

    if 'instances' in new_file_name:
        img_new = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_LINEAR)
    else:
        img_new = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_CUBIC)

    cv2.imwrite(new_file_name, img_new)
image_size_augment.py 文件源码 项目:Tensormodels 作者: asheshjain399 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def resize(img, label, new_size, interpolation=cv2.INTER_CUBIC):
    """
    Resizes the image
    TODO: Make this method more generic to modify the label
    Args:
        img: input image
        new_size: new image size [new_width,new_height]
        interpolation: Kind of interpolation to use
    """

    return cv2.resize(img, new_size, interpolation=interpolation), label
cvtransforms.py 文件源码 项目:diracnets 作者: szagoruyko 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, size, interpolation=cv2.INTER_CUBIC):
        self.size = size
        self.interpolation = interpolation
cvtransforms.py 文件源码 项目:diracnets 作者: szagoruyko 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, size, interpolation=cv2.INTER_CUBIC):
        self.size = size
        self.interpolation = interpolation


问题


面经


文章

微信
公众号

扫码关注公众号