python类CascadeClassifier()的实例源码

byFaceDetection.py 文件源码 项目:Easitter 作者: TomoyaFujita2016 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def detectFace(image):
    cascadePath = "/usr/local/opt/opencv/share/OpenCV/haarcascades/haarcascade_frontalface_alt.xml"
    FACE_SHAPE = 0.45
    result = image.copy()
    imageGray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    cascade = cv2.CascadeClassifier(cascadePath)
    faceRect = cascade.detectMultiScale(imageGray, scaleFactor=1.1, minNeighbors=1, minSize=(1,1))

    if len(faceRect) <= 0:
        return False
    else:
        # confirm face
        imageSize = image.shape[0] * image.shape[1]
        #print("d1")
        filteredFaceRects = []
        for faceR in faceRect:
            faceSize = faceR[2]*faceR[3]
            if FACE_SHAPE > min(faceR[2], faceR[3])/max(faceR[2], faceR[3]):
                break
            filteredFaceRects.append(faceR)

        if len(filteredFaceRects) > 0:
            return True
        else:
            return False
Routines.py 文件源码 项目:structured-output-ae 作者: sbelharbi 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def face_detect(self, img):
        """ Detect the face location of the image img, using Haar cascaded face detector of OpenCV.

        return : x,y w, h of the bouning box.
        """
        face_cascade = cv2.CascadeClassifier('../haarcascades/haarcascade_frontalface_default.xml')
        faces = face_cascade.detectMultiScale(img, 1.3, 5)
        x = -1
        y = -1
        w = -1
        h = -1
        if len(faces) == 1: # we take only when we have 1 face, else, we return nothing.
            x,y,w,h = faces[0]
        else:
##            for (x_,y_,w_,h_) in faces:
##                x = x_
##                y = y_
##                w = w_
##                h = h_
##                break # we take only the first face,
            print "More than one face!!!!!!!!!"


        return x,y,w,h
train.py 文件源码 项目:face_ar 作者: pseelinger 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def index():
    img_array = []
    label_array = []
    face_cascade = cv2.CascadeClassifier("https://raw.githubusercontent.com/opencv/opencv/master/data/haarcascades/haarcascade_frontalface_alt.xml")
    recognizer = cv2.createLBPHFaceRecognizer()
    for row in db(db.faces.id > 0).select():
        rtn = row
        path=os.path.join(request.folder, 'uploads', rtn.file)
#         image = response.download(open(path, 'rb'), chunk_size=4096)
        img = cv2.imread(path, 0)
        img_array.append(img)
#         faces = face_cascade.detectMultiScale(img, 1.3, 5)
#         for (x,y,w,h) in faces:
#             img_array.append(img[y: y + h, x: x + w])
        label_array.append(rtn.user_id)
    recognizer.train(img_array, np.array(label_array))
    recognizer.save(os.path.join(request.folder, 'private', "trained_recognizer.xml"))
    return response.download("trained_recognizer.xml")
frying.py 文件源码 项目:DeepFryBot 作者: asdvek 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def find_eyes(img):
    # print("Searching for eyes...")
    coords = []
    face_cascade = cv2.CascadeClassifier('./classifiers/haarcascade_frontalface_default.xml')
    eye_cascade = cv2.CascadeClassifier('./classifiers/haarcascade_eye.xml')
    gray = np.array(img.convert("L"))

    faces = face_cascade.detectMultiScale(gray, 1.3, 5)
    for (x, y, w, h) in faces:
        roi_gray = gray[y:y + h, x:x + w]
        eyes = eye_cascade.detectMultiScale(roi_gray)
        for (ex, ey, ew, eh) in eyes:
            # print("\tFound eye at ({0}, {1})".format(x+ex+ew/2, y+ey+eh/2))
            coords.append((x+ex+ew/2, y+ey+eh/2))
    if len(coords) == 0:
        # print("\tNo eyes found.")
        pass
    return coords
process_images.py 文件源码 项目:Emotion-Recognition 作者: HashCode55 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def process_image(img = list()):
    """
    Extracts faces from the image using haar cascade, resizes and applies filters. 
    :param img: image matrix. Must be grayscale
    ::returns faces:: list contatining the cropped face images
    """
    face_cascade = cv2.CascadeClassifier('/Users/mehul/opencv-3.0.0/build/share/OpenCV/haarcascades/haarcascade_frontalface_default.xml')   

    faces_location = face_cascade.detectMultiScale(img, 1.3, 5)
    faces = []

    for (x,y,w,h) in faces_location:
        img = img[y:(y+h), x:(x+w)]
        try:
            img = cv2.resize(img, (256, 256))
        except:
            exit(1)
        img = cv2.bilateralFilter(img,15,10,10)
        img = cv2.fastNlMeansDenoising(img,None,4,7,21)
        faces.append(img)

    return faces
detect.py 文件源码 项目:StreamMotionDetection 作者: henry54809 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __init__(self, scale=1.08):
         script_path = common.get_script_path()
         self.cascade = cv2.CascadeClassifier(script_path + "/haarcascade_frontalface_alt.xml")
         self.cascade_profile = cv2.CascadeClassifier(script_path + '/haarcascade_profileface.xml')
         self.scale = scale
         self.hog = cv2.HOGDescriptor()
         self.hog.load(script_path + '/hard_negative_svm/hog.xml')
         self.svm = cv2.ml.SVM_load(script_path + '/hard_negative_svm/output_frontal.xml')
         self.svm_profile = cv2.ml.SVM_load(script_path + '/hard_negative_svm/output_profile.xml')
facevalid_real_time.py 文件源码 项目:faceNet_RealTime 作者: jack55436001 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def main(args):

    saveFace = None;
    cap = cv2.VideoCapture(0)
    face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml')
    while(True):
        # Capture frame-by-frame
        ret, frame = cap.read()
        faces = face_cascade.detectMultiScale(frame, 1.3, 5)
        if len(faces) > 0:
            saveFace = frame
            break;
        # Display the resulting frame
        cv2.imshow('frame',frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    # When everything done, release the capture
    cap.release()
    cv2.destroyAllWindows()
    cv2.imwrite('C:/Users/USER/Desktop/facenet-RealTime/src/face_data/saveFace.jpg',frame)

    mypath = 'C:/Users/USER/Desktop/facenet-RealTime/src/face_data'
    onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))]
    myImage = []
    for file in onlyfiles:
        isImage = None
        file = mypath + '/' + file
        isImage = imghdr.what(file)
        if isImage != None:
            myImage.append(file)

    #begin facenet
    cp.main(args,myImage);
facegroup.py 文件源码 项目:Automatic_Group_Photography_Enhancement 作者: Yuliang-Zou 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def getFaceData(img):
    # Create the haar cascade
    faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
    # Read the image
    image = cv2.imread(img)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # Detect faces in the image
    faces = faceCascade.detectMultiScale(
        gray,
        scaleFactor=1.1,
        minNeighbors=5,
        minSize=(30, 30),
        flags = cv2.cv.CV_HAAR_SCALE_IMAGE
     )
    for (x, y, w, h) in faces:
        facedata = image[y:y+h, x:x+w]
    return facedata
__init__.py 文件源码 项目:python-smart-crop 作者: epixelic 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def center_from_faces(matrix):
    face_cascade = cv2.CascadeClassifier(cascade_path)
    faces = face_cascade.detectMultiScale(matrix, FACE_DETECT_REJECT_LEVELS, FACE_DETECT_LEVEL_WEIGHTS)

    x, y = (0, 0)
    weight = 0

    # iterate over our faces array
    for (x, y, w, h) in faces:
        print('Face detected at ', x, y, w, h)
        weight += w * h
        x += (x + w / 2) * w * h
        y += (y + h / 2) * w * h

    if len(faces) == 0:
        return False

    return {
        'x': x / weight,
        'y': y / weight,
        'count': len(faces)
    }
picCarver.py 文件源码 项目:PyHack 作者: lanxia 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def faceDetect(path, fileName):
    img = cv2.read(path)
    cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
    rects = cascade.detectMultiScale(img, 1.3, 4, cv2.cv.CV_HAAR, SCALE_IMAGE, (20, 20))

    if len(rects) == 0:
        return False

    rects[:, 2:] += rects[:, :2]

    for x1, y1, x2, y2 in rects:
        cv2.rectangle(img, (x1, y1), (x2, y2), (127, 255, 0), 2)

    cv2.imwrite("%s/%s-%s" % (facesDirectory, pcapFile, fileName), img)

    return True
Modules.py 文件源码 项目:apparent-age-gender-classification 作者: danielyou0230 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def debug_face_classifier(file):
    face_cascade = cv2.CascadeClassifier(xml_face_classifier)
    image = cv2.imread(file)

    image = imutils.resize(image, width=500)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(image, 1.07, 3)
    print faces
    for (x, y, w, h) in faces:
        cv2.rectangle(image, (x, y), (x+w, y+h), (255, 0, 0), 2)
        #roi_gray = gray[y:y+h, x:x+w]
        #roi_color = image[y:y+h, x:x+w]

    cv2.imshow('Image', image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
face_recog.py 文件源码 项目:tbotnav 作者: patilnabhi 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self):
        self.node_name = "face_recog_fisher"
        rospy.init_node(self.node_name)

        rospy.on_shutdown(self.cleanup)
        self.bridge = CvBridge()
        self.face_names = StringArray()
        self.all_names = StringArray()

        self.size = 4
        face_haar = 'haarcascade_frontalface_default.xml'
        self.haar_cascade = cv2.CascadeClassifier(face_haar)
        self.face_dir = 'face_data_fisher'
        self.model = cv2.createFisherFaceRecognizer()
        # self.model = cv2.createEigenFaceRecognizer()

        (self.im_width, self.im_height) = (112, 92)        

        rospy.loginfo("Loading data...")
        # self.fisher_train_data()
        self.load_trained_data()
        rospy.sleep(3)        

        # self.img_sub = rospy.Subscriber("/asus/rgb/image_raw", Image, self.img_callback)
        self.img_sub = rospy.Subscriber("/usb_cam/image_raw", Image, self.img_callback)

        # self.img_pub = rospy.Publisher('face_img', Image, queue_size=10)
        self.name_pub = rospy.Publisher('face_names', StringArray, queue_size=10)
        self.all_names_pub = rospy.Publisher('all_face_names', StringArray, queue_size=10)
        rospy.loginfo("Detecting faces...")
train_faces2.py 文件源码 项目:tbotnav 作者: patilnabhi 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __init__(self):
        self.node_name = "train_faces_eigen"
        rospy.init_node(self.node_name)

        rospy.on_shutdown(self.cleanup)
        self.bridge = CvBridge()

        self.size = 4
        face_haar = 'haarcascade_frontalface_default.xml'
        self.haar_cascade = cv2.CascadeClassifier(face_haar)
        self.face_dir = 'face_data_eigen'
        self.face_name = sys.argv[1]
        self.path = os.path.join(self.face_dir, self.face_name)
        # self.model = cv2.createFisherFaceRecognizer()
        self.model = cv2.createEigenFaceRecognizer()

        self.cp_rate = 5

        if not os.path.isdir(self.path):
            os.mkdir(self.path)

        self.count = 0    

        self.train_img_sub = rospy.Subscriber("/usb_cam/image_raw", Image, self.img_callback)
        # self.train_img_pub = rospy.Publisher('train_face', Image, queue_size=10)
        rospy.loginfo("Capturing data...")
train_faces.py 文件源码 项目:tbotnav 作者: patilnabhi 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __init__(self):
        self.node_name = "train_faces_fisher"
        rospy.init_node(self.node_name)

        rospy.on_shutdown(self.cleanup)
        self.bridge = CvBridge()

        self.size = 4
        face_haar = 'haarcascade_frontalface_default.xml'
        self.haar_cascade = cv2.CascadeClassifier(face_haar)
        self.face_dir = 'face_data_fisher'
        self.face_name = sys.argv[1]
        self.path = os.path.join(self.face_dir, self.face_name)
        self.model = cv2.createFisherFaceRecognizer()
        # self.model = cv2.createEigenFaceRecognizer()

        self.cp_rate = 5

        if not os.path.isdir(self.path):
            os.mkdir(self.path)

        self.count = 0    

        self.train_img_sub = rospy.Subscriber("/usb_cam/image_raw", Image, self.img_callback)
        # self.train_img_pub = rospy.Publisher('train_face', Image, queue_size=10)
        rospy.loginfo("Capturing data...")
face_recog2.py 文件源码 项目:tbotnav 作者: patilnabhi 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self):
        self.node_name = "face_recog_eigen"
        rospy.init_node(self.node_name)

        rospy.on_shutdown(self.cleanup)
        self.bridge = CvBridge()
        self.face_names = StringArray()

        self.size = 4
        face_haar = 'haarcascade_frontalface_default.xml'
        self.haar_cascade = cv2.CascadeClassifier(face_haar)
        self.face_dir = 'face_data_eigen'
        # self.model = cv2.createFisherFaceRecognizer()
        self.model = cv2.createEigenFaceRecognizer()

        (self.im_width, self.im_height) = (112, 92)        

        rospy.loginfo("Loading data...")
        # self.fisher_train_data()
        self.load_trained_data()
        rospy.sleep(3)        

        # self.img_sub = rospy.Subscriber("/asus/rgb/image_raw", Image, self.img_callback)
        self.img_sub = rospy.Subscriber("/usb_cam/image_raw", Image, self.img_callback)

        # self.img_pub = rospy.Publisher('face_img', Image, queue_size=10)
        self.name_pub = rospy.Publisher('face_names', StringArray, queue_size=10)
        self.all_names_pub = rospy.Publisher('all_face_names', StringArray, queue_size=10)
        rospy.loginfo("Detecting faces...")
opencv_functions.py 文件源码 项目:HappyNet 作者: danduncan 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def load_cascades():
    # Load Haar cascade files containing features
    cascPaths = ['models/haarcascades/haarcascade_frontalface_default.xml',
                 'models/haarcascades/haarcascade_frontalface_alt.xml',
                 'models/haarcascades/haarcascade_frontalface_alt2.xml',
                 'models/haarcascades/haarcascade_frontalface_alt_tree.xml'
                 'models/lbpcascades/lbpcascade_frontalface.xml']
    faceCascades = []
    for casc in cascPaths:
        faceCascades.append(cv.CascadeClassifier(casc))

    return faceCascades

# Do Haar cascade face detection on a single image
# Face detection returns a list of faces
# Where each face is the coordinates of a rectangle containing a face:
#   (x,y,w,h)
Read.py 文件源码 项目:Face-recognition-test 作者: jiangwei1995910 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def getFaceArray(img):
    #??,haarcascade_frontalface_default.xml??????????
    face_cascade=cv2.CascadeClassifier("/home/jiangwei/??/faceRead/haarcascade_frontalface_default.xml")
    if img.ndim == 3:
            gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    else:
            gray = img  #if?????img???3????????????????gray?????3????2????????

    faces = face_cascade.detectMultiScale(gray, 1.2, 5)#1.3?5?????????????????????????
    result = []
    for (x,y,width,height) in faces:
            result.append((x,y,x+width,y+height))

    return result
    # if(len(result)>0):
    #     # for r in result:
    #         # img2=cv2.rectangle(img, (r[0], r[1]), (r[2], r[3]), (0, 255, 0), 3)
    #         # img3=img[r[1]:r[3], r[0]:r[2]]  # ?????????????
    #
    #     return result
    #
    # return []

#??????
Signup.py 文件源码 项目:Face-recognition-test 作者: jiangwei1995910 项目源码 文件源码 阅读 90 收藏 0 点赞 0 评论 0
def getFaceImg(img):
    face_cascade=cv2.CascadeClassifier("/home/jiangwei/??/faceRead/haarcascade_frontalface_default.xml")
    if img.ndim == 3:
            gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    else:
            gray = img  #if?????img???3????????????????gray?????3????2????????

    faces = face_cascade.detectMultiScale(gray, 1.2, 5)#1.3?5?????????????????????????
    result = []
    for (x,y,width,height) in faces:
            result.append((x,y,x+width,y+height))

    print result
    if(len(result)>0):
        for r in result:
            img2=cv2.rectangle(img, (r[0], r[1]), (r[2], r[3]), (0, 255, 0), 3)
            img3=img[r[1]:r[3], r[0]:r[2]]  # ?????????????


        return [img3,img2]

    return []

#??????
FaceRecognitionWebStreaming.py 文件源码 项目:CodeLabs 作者: TheIoTLearningInitiative 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_frame(self):

        ret, self.image = self.cap.read()

        cv2.imwrite(self.temporal, self.image)

        faceCascade = cv2.CascadeClassifier("classifier/haarcascade_frontalface_alt.xml")
        image = cv2.imread(self.temporal)
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        faces = faceCascade.detectMultiScale(
            gray,
            scaleFactor=1.1,
            minNeighbors=5,
            minSize=(30, 30),
            flags = cv2.cv.CV_HAAR_SCALE_IMAGE
        )
        print "Found {0} faces!".format(len(faces))

        for (x, y, w, h) in faces:
            cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)

    cv2.imwrite(self.faces,np.hstack((self.image,image)))
    return open(self.faces, 'rb').read()
main.py 文件源码 项目:CodeLabs 作者: TheIoTLearningInitiative 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def detect(self):
        faceCascade = cv2.CascadeClassifier(self.cascPath)
        image = cv2.imread(self.imageinput)
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        faces = faceCascade.detectMultiScale(
            gray,
            scaleFactor=1.1,
            minNeighbors=5,
            minSize=(30, 30),
            flags = cv2.cv.CV_HAAR_SCALE_IMAGE
        )

        print "Found {0} faces!".format(len(faces))

        for (x, y, w, h) in faces:
            cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)
        cv2.imwrite(self.imageoutput, image)
        cv2.waitKey(0)
align_dlib.py 文件源码 项目:EyesInTheSky 作者: SherineSameh 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __init__(self, facePredictor):
        """
        Instantiate an 'AlignDlib' object.

        :param facePredictor: The path to dlib's facial landmark detector
        :type facePredictor: str
        :param OPENCV_Detector: The path to opencv's HaarCasscade
        :type  OPENCV_Detector: str
        :param HOG_Detector: The path to dlib's HGO face detection model
        :type  HOG_Detector: str                
        """
        assert facePredictor is not None

        self.OPENCV_Detector =  cv2.CascadeClassifier("/home/pi/opencv-3.1.0/data/haarcascades/haarcascade_frontalface_default.xml")
        self.HOG_Detector    = dlib.get_frontal_face_detector()
        self.predictor       = dlib.shape_predictor(facePredictor)
accuracy.py 文件源码 项目:face_detection 作者: PuchatekwSzortach 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def check_opencv_accuracy(image_paths, bounding_boxes_map):

    detection_scores = []

    filters_path = os.path.expanduser("~/anaconda3/share/OpenCV/haarcascades/haarcascade_frontalface_default.xml")
    cascade_classifier = cv2.CascadeClassifier(filters_path)

    for path in tqdm.tqdm(image_paths):

        image = cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2GRAY)

        image_bounding_box = shapely.geometry.box(0, 0, image.shape[1], image.shape[0])
        face_bounding_box = bounding_boxes_map[os.path.basename(path)]

        # Only try to search for faces if they are larger than 1% of image. If they are smaller,
        # ground truth bounding box is probably incorrect
        if face.geometry.get_intersection_over_union(image_bounding_box, face_bounding_box) > 0.01:

            value = 1 if does_opencv_detect_face_correctly(image, face_bounding_box, cascade_classifier) else 0
            detection_scores.append(value)

    print("OpenCV accuracy is {}".format(np.mean(detection_scores)))
face_detect.py 文件源码 项目:Python_SelfLearning 作者: fukuit 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def facedetect(file):
    """ haar????????????????????????
    Args:
        file : ????????????
    """
    face_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_default.xml')
    eye_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_eye.xml')
    img = cv2.imread(file)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)
    for (x, y, w, h) in faces:
        cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
        roi_gray = gray[y:y+h, x:x+w]
        roi_color = img[y:y+h, x:x+w]
        eyes = eye_cascade.detectMultiScale(roi_gray)
        for(ex, ey, ew, eh) in eyes:
            cv2.rectangle(roi_color, (ex, ey), (ex+ew, ey+eh), (0, 255, 0), 2)
    plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    plt.show()
face_recognition.py 文件源码 项目:smart-cam 作者: smart-cam 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self):
        cfg = Config()
        # set up face detection models
        opencv_home = cfg.get("face_detection", "opencv_home")
        haarcascade = cfg.get("face_detection", "haarcascade")
        cascadePath = "/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_default.xml"
        self.faceCascade = cv2.CascadeClassifier('{0}/{1}'.format(opencv_home, haarcascade))

        self.recognizer = cv2.face.createLBPHFaceRecognizer()
        #self.recognizer = cv2.face.createEigenFaceRecognizer()
        #self.recognizer = cv2.face.createFisherFaceRecognizer()

        # the faces and Raspberry Pi locations we'll use
        self.names = ["james", "juanjo", "sayantan", "vineet"]
        self.rasp_names = ["FrontDoor", "Entrance", "Garage"]
        access = cfg.get("aws", "access_key_id")
        secret = cfg.get("aws", "secret_access_key")

        # connect to dynamo
        self.conn = boto.dynamodb2.connect_to_region('us-west-1', aws_access_key_id=access, aws_secret_access_key=secret)
        self.sc = Table('SMARTCAM', connection=self.conn)


    # read in training set and train the model
Object_Detection_Haar_Cascade.py 文件源码 项目:Face-Detection-using-Haarcascade 作者: KrUciFieR-Jr 项目源码 文件源码 阅读 71 收藏 0 点赞 0 评论 0
def detect():
    face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
    eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')

    cap = cv2.VideoCapture(0)
    if(face_cascade=='0'):
        print("Hello This is NUll")
    while True:
        ret , img = cap.read()
        gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
        faces = face_cascade.detectMultiScale(gray,1.3,5)
        for (x,y,w,h) in faces:
            cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
            roi_gray = gray[y:y+h,x:x+w]
            roi_color = img[y:y+h,x:x+w]
            eyes = eye_cascade.detectMultiScale(roi_gray)
            for (ex,ey,ew,eh) in eyes:
                cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
        cv2.imshow('img',img)
        k = cv2.waitKey(30) & 0xff
        if k == 27:
            break
    cv2.destroyAllWindows()
    cap.release()
face1.py 文件源码 项目:Learn-to-identify-similar-images 作者: MashiMaroLjc 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def detectFaces(image_path):
    """
    Open the image based on the image_path and find all faces in the image.
    Finally, return the coordinates , width and height as a list
    """
    img = cv2.imread(image_path)

    face_cascade = cv2.CascadeClassifier("cvdata\\haarcascades\\haarcascade_frontalface_default.xml")
    if img.ndim == 3:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    else:
        gray = img 


    faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=3, minSize=(10,10),
                                     flags=cv2.CASCADE_SCALE_IMAGE)
    result = []

    for (x,y,width,height) in faces:
        result.append((x,y,x+width,y+height))
    return result
face2.py 文件源码 项目:Learn-to-identify-similar-images 作者: MashiMaroLjc 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def detect_faces(image):

    face_cascade1 = cv2.CascadeClassifier(XML_PATH1)
    if image.ndim == 3:
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    else:
        gray = image 

    faces = face_cascade1.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=3, minSize=(10,10),
                                     flags=cv2.CASCADE_SCALE_IMAGE)


    result=[]

    for (x,y,width,height) in faces :
        result.append((x,y,x+width,y+height))
    return result
facerec_train.py 文件源码 项目:deepvisualminer 作者: pathbreak 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def detect(img_file, detector_xml_path, dest_img_file):
    img = cv2.imread(img_file)

    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    detector = cv2.CascadeClassifier(detector_xml_path)

    min_size = (min(50, gray_img.shape[0] // 10), min(50, gray_img.shape[1] // 10))
    hits = detector.detectMultiScale(gray_img, 1.1, 4, 0, min_size)
    #cv2.groupRectangles(hits, 2)
    print(hits)

    hits_img = np.copy(img)
    for (x,y,w,h) in hits:
        cv2.rectangle(hits_img, (x,y), (x+w, y+h), (0,0,255), 2)
    cv2.imwrite(dest_img_file, hits_img)
extractor.py 文件源码 项目:ObjectExtractor 作者: ducthienbui97 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def detect(cls,
               image,
               min_size=(50, 50),
               scale_factor=1.1,
               min_neighbors=5,
               cascade_file=_current_cascade):
        """ Return list of objects detected.
        image -- The image (numpy matrix) read by readImage function.
        min_size -- Minimum possible object size. Objects smaller than that are ignored (default (50,50)).
        scale_factor -- Specifying how much the image size is reduced at each image scale (default 1.1).
        min_neighbors -- Specifying how many neighbors each candidate rectangle should have to retain it (default 5).
        cascade_file  -- The path of cascade xml file use for detection (default current value)
        """

        classifier = cls._classifier
        if cascade_file != cls._current_cascade:
            classifier = cv2.CascadeClassifier(cascade_file)

        gray_image = cls.bgr_to_gray(image)
        return classifier.detectMultiScale(gray_image,
                                           scaleFactor=scale_factor,
                                           minNeighbors=min_neighbors,
                                           minSize=min_size)
test_file.py 文件源码 项目:FaceRecoginition 作者: ProHiryu 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def test_file():
    count = 1
    face_cascade = cv2.CascadeClassifier(
        '/usr/local/opt/opencv3/share/OpenCV/haarcascades/haarcascade_frontalface_default.xml')

    argvs = sys.argv
    for argv in argvs[1:]:
        img = cv2.imread(argv)

        if type(img) != str:
            try:
                gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
                print('convert succeed')
            except:
                print('can not convert to gray image')
                continue
            faces = face_cascade.detectMultiScale(gray, 1.3, 5)
            for (x, y, w, h) in faces:
                f = cv2.resize(gray[y:(y + h), x:(x + w)], (128, 128))
                model = load_model('/Users/songheqi/model/model.h5')
                num, acc = predict(model, f, 128)
                name_list = read_name_list('/Users/songheqi/train_set/')
                print('The {} picture is '.format(count) +
                      name_list[num] + ' acc : ', acc)
                count += 1


问题


面经


文章

微信
公众号

扫码关注公众号