python类THRESH_BINARY的实例源码

preprocessor.py 文件源码 项目:HandwritingRecognition 作者: eng-tsmith 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def thresholding(img_grey):
    """
    This functions creates binary images using thresholding
    :param img_grey: greyscale image
    :return: binary image
    """
    # # Global
    # ret1, thresh1 = cv.threshold(img_grey, 127, 255, cv.THRESH_BINARY_INV)
    # show_img(thresh1)
    #
    # # Adaptive Mean
    # img_binary = cv.adaptiveThreshold(img_grey, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, 11, 2)
    # ret2, thresh2 = cv.threshold(img_binary, 127, 255, cv.THRESH_BINARY_INV)
    # show_img(thresh2)
    #
    # # Adaptive Gaussian
    # img_binary = cv.adaptiveThreshold(img_grey, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 11, 2)
    # ret3, thresh3 = cv.threshold(img_binary, 127, 255, cv.THRESH_BINARY_INV)
    # show_img(thresh3)

    # Otsu's thresholding after Gaussian filtering
    blur = cv.GaussianBlur(img_grey, (5, 5), 0)
    ret4, img_otsu = cv.threshold(blur, 0, 255, cv.THRESH_BINARY + cv.THRESH_OTSU)
    ret4, thresh4 = cv.threshold(img_otsu, 127, 255, cv.THRESH_BINARY_INV)
    # show_img(thresh4)

    return thresh4
Artificial-potential-without-controller.py 文件源码 项目:Artificial-Potential-Field 作者: vampcoder 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def classify(img):
    cimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img2 = cv2.medianBlur(cimg, 13)

    ret, thresh1 = cv2.threshold(cimg, 100, 120, cv2.THRESH_BINARY)
    t2 = copy.copy(thresh1)

    x, y = thresh1.shape
    arr = np.zeros((x, y, 3), np.uint8)
    final_contours = []
    image, contours, hierarchy = cv2.findContours(t2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    #cv2.imshow('image', image)
    #k = cv2.waitKey(0)
    for i in range(len(contours)):
        cnt = contours[i]
        if cv2.contourArea(cnt) > 35000 and cv2.contourArea(cnt) < 15000:
            cv2.drawContours(img, [cnt], -1, [0, 255, 255])
            cv2.fillConvexPoly(arr, cnt, [255, 255, 255])
            final_contours.append(cnt)
    cv2.imshow('arr', arr)
    k = cv2.waitKey(0)
    return arr
parser.py 文件源码 项目:rosreestr2coord 作者: rendrom 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_image_xy_corner(self):
        """get ?artesian coordinates from raster"""
        import cv2

        if not self.image_path:
            return False
        image_xy_corners = []
        img = cv2.imread(self.image_path, cv2.IMREAD_GRAYSCALE)
        imagem = (255 - img)

        try:
            ret, thresh = cv2.threshold(imagem, 10, 128, cv2.THRESH_BINARY)
            try:
                contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            except Exception:
                im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)

            hierarchy = hierarchy[0]
            hierarhy_contours = [[] for _ in range(len(hierarchy))]
            for fry in range(len(contours)):
                currentContour = contours[fry]
                currentHierarchy = hierarchy[fry]
                cc = []
                # epsilon = 0.0005 * cv2.arcLength(contours[len(contours) - 1], True)
                approx = cv2.approxPolyDP(currentContour, self.epsilon, True)
                if len(approx) > 2:
                    for c in approx:
                        cc.append([c[0][0], c[0][1]])
                    parent_index = currentHierarchy[3]
                    index = fry if parent_index < 0 else parent_index
                    hierarhy_contours[index].append(cc)

            image_xy_corners = [c for c in hierarhy_contours if len(c) > 0]
            return image_xy_corners
        except Exception as ex:
            self.error(ex)
        return image_xy_corners
athreshold_plg.py 文件源码 项目:opencv-plgs 作者: Image-Py 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def run(self, ips, snap, img, para = None):
        med = cv2.ADAPTIVE_THRESH_MEAN_C if para['med']=='mean' else cv2.ADAPTIVE_THRESH_GAUSSIAN_C
        mtype = cv2.THRESH_BINARY_INV if para['inv'] else cv2.THRESH_BINARY
        cv2.adaptiveThreshold(snap, para['max'], med, para['inv'], para['size'], para['offset'], dst=img)
dushu.py 文件源码 项目:dust_repos 作者: taozhijiang 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def img_sobel_binary(im, blur_sz):

    # ??????????????
    img_blur = cv2.GaussianBlur(im,blur_sz,0)
    if len(img_blur.shape) == 3:
        blur_gray = cv2.cvtColor(img_blur,cv2.COLOR_BGR2GRAY) 
    else:
        blur_gray = img_blur

    # ??Sobel????
    sobelx = cv2.Sobel(blur_gray,cv2.CV_16S,1,0,ksize=3)
    abs_sobelx = np.absolute(sobelx)
    sobel_8u = np.uint8(abs_sobelx)
    img_show_hook("Sobel??", sobel_8u)

    # OTSU??????    
    ret, thd = cv2.threshold(sobel_8u, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)    
    thd_abs = cv2.convertScaleAbs(thd)
    bgimg = cv2.addWeighted(thd_abs, 1, 0, 0, 0)

    img_show_hook("OTSU????", bgimg)

    return bgimg
idcard.py 文件源码 项目:dust_repos 作者: taozhijiang 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def img_sobel_binary(im, blur_sz):

    # ??????????????
    img_blur = cv2.GaussianBlur(im,blur_sz,0)
    if len(img_blur.shape) == 3:
        blur_gray = cv2.cvtColor(img_blur,cv2.COLOR_BGR2GRAY) 
    else:
        blur_gray = img_blur

    # ??Sobel????
    sobelx = cv2.Sobel(blur_gray,cv2.CV_16S,1,0,ksize=3)
    abs_sobelx = np.absolute(sobelx)
    sobel_8u = np.uint8(abs_sobelx)
    img_show_hook("Sobel??", sobel_8u)

    # OTSU??????    
    ret, thd = cv2.threshold(sobel_8u, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)    
    thd_abs = cv2.convertScaleAbs(thd)
    bgimg = cv2.addWeighted(thd_abs, 1, 0, 0, 0)

    img_show_hook("OTSU????", bgimg)

    return bgimg
dsb_utils.py 文件源码 项目:diagnose-heart 作者: woshialex 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def clean_segmentation2(segments, img_size):
    seg_binary = np.zeros_like(segments)
    for i in xrange(segments.shape[0]):
        _,sb = cv2.threshold(np.copy(segments[i,0])*255, 127, 255, cv2.THRESH_BINARY)
        patches = get_patches(sb)
        if len(patches)==0:
            continue
        sum_pdf_vals = [sum(pdf_dict[x,y] for x,y in p) for p in patches]
        avg_pdf_vals = [sum(pdf_dict[x,y] for x,y in p)/p.shape[0] for p in patches]
        max_sum_pdf = max(sum_pdf_vals)
        for p_idx, p in enumerate(patches):
            if avg_pdf_vals[p_idx] < 0.07 or sum_pdf_vals[p_idx] < max_sum_pdf:
                for x,y in p:
                    seg_binary[i,0,x,y]=0
            else:
                for x,y in p:
                    seg_binary[i,0,x,y]=1
    return seg_binary
dsb_utils.py 文件源码 项目:diagnose-heart 作者: woshialex 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def segment_ch4(self, segment_fn, segment_transform):
        segs = np.zeros_like(self.ch4_images, dtype=np.float32)
        ims = np.copy(self.ch4_images).reshape(-1, 1, self.ch4_images.shape[1],
                self.ch4_images.shape[2])
        ims = segment_transform(ims)
        for i in xrange(self.ch4_images.shape[0]):
            segs[i:i+1] = segment_fn(ims[i:i+1])
            _,sb = cv2.threshold(np.copy(segs[i])*255, 127, 255, cv2.THRESH_BINARY)
            patches = get_patches(sb)
            sb = np.zeros_like(sb, dtype=np.uint8)
            if len(patches) > 0:
                patch = next(p for p in patches if p.shape[0] == max(p1.shape[0]
                    for p1 in patches))
                for x,y in patch:
                    sb[x,y]=255
                pca = decomposition.PCA(n_components=2)
                pca.fit(patch)
                mean, major = pca.mean_, pca.components_[0]
                middle = sb.shape[0]/2
                sb = cv2.warpAffine(sb, np.float32([[1,0,middle-mean[1]],
                    [0,1,middle-mean[0]]]), sb.shape)
                sb = scipy.misc.imrotate(sb, np.arctan2(*major)*180/np.pi)
            segs[i:i+1]=sb
        self.ch4seg = segs
        self.ch4counts = np.array([np.count_nonzero(s) for s in self.ch4seg]).reshape(1,-1)
dsb_utils.py 文件源码 项目:diagnose-heart 作者: woshialex 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def clean_segmentation(segments, img_size, thresh):
    mean = segments.mean(axis=(0,1))
    gaussian_params = gaussian_moments_fake(mean, normalize_height=True)
    pdf = gaussian_pdf(*gaussian_params)
    seg_binary = np.zeros_like(segments)
    pdf_dict = np.zeros_like(mean)
    for x in xrange(mean.shape[0]):
        for y in xrange(mean.shape[1]):
            pdf_dict[x,y] = pdf(x,y)
    for i in xrange(segments.shape[0]):
        _,sb = cv2.threshold(np.copy(segments[i,0])*255, 127, 255, cv2.THRESH_BINARY)
        patches = get_patches(sb)
        if len(patches)==0:
            continue
        sum_pdf_vals = [sum(pdf_dict[x,y] for x,y in p) for p in patches]
        avg_pdf_vals = [sum(pdf_dict[x,y] for x,y in p)/p.shape[0] for p in patches]
        max_sum_pdf = max(sum_pdf_vals)
        for p_idx, p in enumerate(patches):
            if avg_pdf_vals[p_idx] < 0.07 or sum_pdf_vals[p_idx] < max_sum_pdf:
                for x,y in p:
                    seg_binary[i,0,x,y]=0
            else:
                for x,y in p:
                    seg_binary[i,0,x,y]=1
    return seg_binary
tracking.py 文件源码 项目:ATLeS 作者: liffiton 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _do_filter(self, frame):
        ''' Process a single frame. '''
        # blur to reduce noise
        frame = cv2.GaussianBlur(frame, (5, 5), 0, borderType=cv2.BORDER_CONSTANT)

        # threshold to find contiguous regions of "bright" pixels
        # ignore all "dark" (<1/8 max) pixels
        max = numpy.max(frame)
        min = numpy.min(frame)
        # if the frame is completely dark, then just return it
        if max == min:
            return frame
        threshold = min + (max - min) / 8
        _, frame = cv2.threshold(frame, threshold, 255, cv2.THRESH_BINARY)

        # filter out single pixels and other noise
        frame = cv2.erode(frame, self._element_shrink)

        # restore and join nearby regions (in case one fish has a skinny middle...)
        frame = cv2.dilate(frame, self._element_grow)

        return frame
recognition.py 文件源码 项目:pyhiro 作者: wanweiwei07 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def checkAvailability(sift, tkp, tdes, matchimg):
    """

    :param sift:
    :param tkp:
    :param tdes:sift feature object, template keypoints, and template descriptor
    :param matchimg:
    :return:
    """

    qimg = cv2.imread(matchimg)
    qimggray = cv2.cvtColor(qimg,cv2.COLOR_BGR2GRAY)
    # kernel = np.ones((5,5), np.uint8)
    # qimggray = cv2.erode(qimggray, kernel, iterations=1)
    # ret,threshimg = cv2.threshold(qimggray,100,255,cv2.THRESH_BINARY)
    qkp,qdes = sift.detectAndCompute(qimggray, None)
    # plt.imshow(threshimg, 'gray'), plt.show()

    FLANN_INDEX_KDITREE=0
    index_params=dict(algorithm=FLANN_INDEX_KDITREE,tree=5)
    # FLANN_INDEX_LSH = 6
    # index_params = dict(algorithm=FLANN_INDEX_LSH,
    #                     table_number=12,  # 12
    #                     key_size=20,  # 20
    #                     multi_probe_level=2)  # 2
    search_params = dict(checks = 50)
    flann=cv2.FlannBasedMatcher(index_params,search_params)
    matches=flann.knnMatch(tdes,qdes,k=2)
    goodMatch=[]
    for m_n in matches:
        if len(m_n) != 2:
            continue
        m, n = m_n
        if(m.distance<0.75*n.distance):
            goodMatch.append(m)
    MIN_MATCH_COUNT = 30
    if (len(goodMatch) >= MIN_MATCH_COUNT):
        tp = []
        qp = []

        for m in goodMatch:
            tp.append(tkp[m.queryIdx].pt)
            qp.append(qkp[m.trainIdx].pt)

        tp, qp = np.float32((tp, qp))
        H, status = cv2.findHomography(tp, qp, cv2.RANSAC, 3.0)

        h = timg.shape[0]
        w = timg.shape[1]
        trainBorder = np.float32([[[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]])
        queryBorder = cv2.perspectiveTransform(trainBorder, H)
        cv2.polylines(qimg, [np.int32(queryBorder)], True, (0, 255, 0), 5)
        cv2.imshow('result', qimg)
        plt.imshow(qimg, 'gray'), plt.show()
        return True
    else:
        print "Not Enough match found- %d/%d" % (len(goodMatch), MIN_MATCH_COUNT)
        return False
    # cv2.imshow('result', qimg)
    # if cv2.waitKey(10) == ord('q'):
    #     cv2.destroyAllWindows()
speed_detection.py 文件源码 项目:ETS2Autopilot 作者: BrunoTh 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_speed(frame):
    """
    :param frame: Captured image
    :return: Speed
    """
    # Disable speed detection
    return 0
    speed = frame[settings.IMAGE_SPEED_Y[0]:settings.IMAGE_SPEED_Y[1], settings.IMAGE_SPEED_X[0]:settings.IMAGE_SPEED_X[1]]
    speed_gray = cv2.cvtColor(speed, cv2.COLOR_BGR2GRAY)

    # Zoom
    rows, cols = speed_gray.shape[:2]
    M = np.float32([[2, 0, 0], [0, 2, 0]])
    speed_zoom = cv2.warpAffine(speed_gray, M, (cols * 2, rows * 2))
    _, speed_threshold = cv2.threshold(speed_zoom, 210, 255, cv2.THRESH_BINARY)

    to_detect = speed_threshold[:, 26:]
    #cv2.imshow('speed', to_detect)
    to_detect = cv2.resize(to_detect, (20, 20))
    to_detect = to_detect.reshape((1, 400))
    to_detect = np.float32(to_detect)
    _, results, _, _ = model.findNearest(to_detect, k=1)

    return int((results[0][0]))
location.py 文件源码 项目:Vehicle-Logo-Recognition 作者: xinyuexy 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def logoDetect(img,imgo):
    '''???????????????'''
    imglogo=imgo.copy()
    img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    img=cv2.resize(img,(2*img.shape[1],2*img.shape[0]),interpolation=cv2.INTER_CUBIC)
    #img=cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,-3)
    ret,img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
    #img=cv2.Sobel(img, cv2.CV_8U, 1, 0, ksize = 9)
    img=cv2.Canny(img,100,200)
    element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
    element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
    img = cv2.dilate(img, element2,iterations = 1)
    img = cv2.erode(img, element1, iterations = 3)
    img = cv2.dilate(img, element2,iterations = 3)

    #????
    im2, contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    tema=0
    result=[]
    for con in contours:
        x,y,w,h=cv2.boundingRect(con)
        area=w*h
        ratio=max(w/h,h/w)
        if area>300 and area<20000 and ratio<2:
            if area>tema:
                tema=area
                result=[x,y,w,h]
                ratio2=ratio
    #?????????????????,??????????
    logo2_X=[int(result[0]/2+plate[0]-3),int(result[0]/2+plate[0]+result[2]/2+3)]
    logo2_Y=[int(result[1]/2+max(0,plate[1]-plate[3]*3.0)-3),int(result[1]/2+max(0,plate[1]-plate[3]*3.0)+result[3]/2)+3]
    cv2.rectangle(img,(result[0],result[1]),(result[0]+result[2],result[1]+result[3]),(255,0,0),2)
    cv2.rectangle(imgo,(logo2_X[0],logo2_Y[0]),(logo2_X[1],logo2_Y[1]),(0,0,255),2)
    print tema,ratio2,result
    logo2=imglogo[logo2_Y[0]:logo2_Y[1],logo2_X[0]:logo2_X[1]]
    cv2.imwrite('./logo2.jpg',logo2)

    return img
class_PlantIdentifier.py 文件源码 项目:Farmbot_GeneralAP 作者: SpongeYao 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def extractPlantsArea(self, arg_mode=0,arg_INV= False, b_threshold=80, a_threshold=80):
        zeros = np.zeros(self.image.shape[:2], dtype = "uint8")

        imgLAB = cv2.cvtColor(self.image, self.colorSpace)
        (L, A, B) = cv2.split(imgLAB)
        cv2.imwrite('Debug/imgB.jpg',B)
        cv2.imwrite('Debug/imgA.jpg',A)
        #(T_weeds_b, thresh_weeds_b) = cv2.threshold(B, b_threshold, 255, cv2.THRESH_BINARY)
        #(T_weeds_a, thresh_weeds_a) = cv2.threshold(A, a_threshold, 255, cv2.THRESH_BINARY)
        if arg_mode==0:
            thresh_weeds_a= imgProcess_tool.binarialization(A,0,arg_INV, a_threshold)
            thresh_weeds_b= imgProcess_tool.binarialization(B,0,arg_INV, b_threshold)
        elif arg_mode==1:
            thresh_weeds_b= imgProcess_tool.binarialization(B, 1, arg_INV)
            thresh_weeds_a= imgProcess_tool.binarialization(A, 1, arg_INV)
        elif arg_mode==2:
            thresh_weeds_b= imgProcess_tool.binarialization(B, 2, arg_INV)
            thresh_weeds_a= imgProcess_tool.binarialization(A, 2, arg_INV)
        cv2.imwrite('Debug/imgB_thr.jpg',thresh_weeds_b)
        cv2.imwrite('Debug/imgA_thr.jpg',thresh_weeds_a)
        imgRGB = cv2.merge([zeros, thresh_weeds_b, thresh_weeds_a])
        return thresh_weeds_a, thresh_weeds_b
class_ImageProcessing.py 文件源码 项目:Farmbot_GeneralAP 作者: SpongeYao 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def get_contour(self, arg_frame, arg_export_index, arg_export_path, arg_export_filename, arg_binaryMethod):
        # Otsu's thresholding after Gaussian filtering
        tmp = cv2.cvtColor(arg_frame, cv2.COLOR_RGB2GRAY)
        blur = cv2.GaussianBlur(tmp,(5,5),0)
        if arg_binaryMethod== 0:
            ret, thresholdedImg= cv2.threshold(blur.copy() , self.threshold_graylevel, 255 , 0)
        elif arg_binaryMethod == 1:
            ret,thresholdedImg = cv2.threshold(blur.copy(),0 ,255 ,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
        elif arg_binaryMethod== 2:
            thresholdedImg = cv2.adaptiveThreshold(blur.copy(),255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,5,0)

        result = cv2.cvtColor(thresholdedImg, cv2.COLOR_GRAY2RGB)
        ctrs, hier = cv2.findContours(thresholdedImg, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

        ctrs = filter(lambda x : cv2.contourArea(x) > self.threshold_size , ctrs)

        rects = [[cv2.boundingRect(ctr) , ctr] for ctr in ctrs]

        for rect , cntr in rects:
            cv2.drawContours(result, [cntr], 0, (0, 128, 255), 3)
        if arg_export_index:
            cv2.imwrite(arg_export_path+ arg_export_filename+'.jpg', result)
        print "Get Contour success"
        return result
methods.py 文件源码 项目:qtim_ROP 作者: QTIM-Lab 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def binary_morph(img, thresh=50, min_size=None, mask_only=True):

    if min_size is None:  # default to 10% of largest image dimension
        min_size = float(max(img.shape)) * .1

    if len(img.shape) == 3:  # flatten if RGB image
        img = np.mean(img, 2).astype(np.uint8)

    # Apply binary threshold and erode
    ret, thresh_im = cv2.threshold(img, thresh, 255, cv2.THRESH_BINARY)

    # Connected component labelling
    n, labels, stats, centroids = cv2.connectedComponentsWithStats(thresh_im)
    mask = np.zeros_like(labels)

    # Loop through areas in order of size
    areas = [s[4] for s in stats]
    sorted_idx = np.argsort(areas)

    for lidx, cc in zip(sorted_idx, [areas[s] for s in sorted_idx][:-1]):

        if cc > min_size:
            mask[labels == lidx] = 1

    if mask_only:
        return mask * 255
    return np.dstack([img * mask] * 3).astype(np.uint8)
image_utils.py 文件源码 项目:Brewereader 作者: ceafdc 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def find_lines(img, acc_threshold=0.25, should_erode=True):
    if len(img.shape) == 3 and img.shape[2] == 3:  # if it's color
        img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    img = cv2.GaussianBlur(img, (11, 11), 0)
    img = cv2.adaptiveThreshold(
            img,
            255,
            cv2.ADAPTIVE_THRESH_MEAN_C,
            cv2.THRESH_BINARY,
            5,
            2)

    img = cv2.bitwise_not(img)

    # thresh = 127
    # edges = cv2.threshold(img, thresh, 255, cv2.THRESH_BINARY)[1]
    # edges = cv2.Canny(blur, 500, 500, apertureSize=3)

    if should_erode:
        element = cv2.getStructuringElement(cv2.MORPH_RECT, (4, 4))
        img = cv2.erode(img, element)

    theta = np.pi/2000
    angle_threshold = 2
    horizontal = cv2.HoughLines(
            img,
            1,
            theta,
            int(acc_threshold * img.shape[1]),
            min_theta=np.radians(90 - angle_threshold),
            max_theta=np.radians(90 + angle_threshold))
    vertical = cv2.HoughLines(
            img,
            1,
            theta,
            int(acc_threshold * img.shape[0]),
            min_theta=np.radians(-angle_threshold),
            max_theta=np.radians(angle_threshold),
            )

    horizontal = list(horizontal) if horizontal is not None else []
    vertical = list(vertical) if vertical is not None else []

    horizontal = [line[0] for line in horizontal]
    vertical = [line[0] for line in vertical]

    horizontal = np.asarray(horizontal)
    vertical = np.asarray(vertical)

    return horizontal, vertical
remove_noise.py 文件源码 项目:image_text_reader 作者: yardstick17 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def remove_noise_and_smooth(file_name):
    logging.info('Removing noise and smoothening image')
    img = cv2.imread(file_name, 0)
    filtered = cv2.adaptiveThreshold(img.astype(np.uint8), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 41, 3)
    kernel = np.ones((1, 1), np.uint8)
    opening = cv2.morphologyEx(filtered, cv2.MORPH_OPEN, kernel)
    closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel)
    img = image_smoothening(img)
    or_image = cv2.bitwise_or(img, closing)
    return or_image
binarize_allfiles.py 文件源码 项目:Python_SelfLearning 作者: fukuit 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def convert_and_count(target, ext):
    for root, dirs, files in os.walktarget):
        for f in files:
            fname, fext = os.path.splitext(f)
            if fext == ext:
                img = cv2.imread(os.path.join(root, f), 0)
                blur = cv2.GaussianBlur(img, (5, 5), 0)
                ret, imgb = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
                cv2.imwrite(os.path.join(root, fname + ".bin.png"), imgb)
                cnt = 0
                for val in imgb.flat:
                    if val == 0:
                        cnt += 1
                ratio = cnt / img.size
                msg = "%s:\t%.5f" % (f, ratio)
                print(msg)


问题


面经


文章

微信
公众号

扫码关注公众号