def __bound_contours(roi):
"""
returns modified roi(non-destructive) and rectangles that founded by the algorithm.
@roi region of interest to find contours
@return (roi, rects)
"""
roi_copy = roi.copy()
roi_hsv = cv2.cvtColor(roi, cv2.COLOR_RGB2HSV)
# filter black color
mask1 = cv2.inRange(roi_hsv, np.array([0, 0, 0]), np.array([180, 255, 125]))
mask1 = cv2.morphologyEx(mask1, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
mask1 = cv2.Canny(mask1, 100, 300)
mask1 = cv2.GaussianBlur(mask1, (1, 1), 0)
mask1 = cv2.Canny(mask1, 100, 300)
# mask1 = cv2.morphologyEx(mask1, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)))
# Find contours for detected portion of the image
im2, cnts, hierarchy = cv2.findContours(mask1.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5] # get largest five contour area
rects = []
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
x, y, w, h = cv2.boundingRect(approx)
if h >= 15:
# if height is enough
# create rectangle for bounding
rect = (x, y, w, h)
rects.append(rect)
cv2.rectangle(roi_copy, (x, y), (x+w, y+h), (0, 255, 0), 1);
return (roi_copy, rects)
python类findContours()的实例源码
def find_squares(img):
img = cv2.GaussianBlur(img, (5, 5), 0)
squares = []
for gray in cv2.split(img):
for thrs in xrange(0, 255, 26):
if thrs == 0:
bin = cv2.Canny(gray, 0, 50, apertureSize=5)
bin = cv2.dilate(bin, None)
else:
retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
cnt_len = cv2.arcLength(cnt, True)
cnt = cv2.approxPolyDP(cnt, 0.02 * cnt_len, True)
if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
cnt = cnt.reshape(-1, 2)
max_cos = np.max([angle_cos(cnt[i], cnt[(i + 1) % 4], cnt[(i + 2) % 4]) for i in xrange(4)])
if max_cos < 0.1:
squares.append(cnt)
return squares
def find_biggest_contour(image):
# Copy
image = image.copy()
#input, gives all the contours, contour approximation compresses horizontal,
#vertical, and diagonal segments and leaves only their end points. For example,
#an up-right rectangular contour is encoded with 4 points.
#Optional output vector, containing information about the image topology.
#It has as many elements as the number of contours.
#we dont need it
_, contours, hierarchy = cv2.findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# Isolate largest contour
contour_sizes = [(cv2.contourArea(contour), contour) for contour in contours]
biggest_contour = max(contour_sizes, key=lambda x: x[0])[1]
mask = np.zeros(image.shape, np.uint8)
cv2.drawContours(mask, [biggest_contour], -1, 255, -1)
return biggest_contour, mask
def find_triangles(filename):
FIRST = 0
RED = (0, 0, 255)
THICKNESS = 3
copy = img = cv2.imread(filename)
grey_img = cv2.imread(file_name, cv2.IMREAD_GRAYSCALE)
ret, thresh = cv2.threshold(grey_img, 127, 255, 1)
contours, h = cv2.findContours(thresh, 1, 2)
largest = None
for contour in countours:
approx = cv2.approxPolyDP(contour,0.01*cv2.arcLength(contour,True),True)
if len(approx) == 3:
#triangle found
if largest is None or cv2.contourArea(contour) > cv2.contourArea(largest):
largest = contour
#write file
cv2.drawContours(copy, [largest], FIRST, RED, THICKNESS)
cv2.imwrite(filename +"_result", copy)
def remove_borders(image):
ratio = image.shape[0] / 500.0
orig = image.copy()
image = resize(image, height=500)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(gray, 75, 200)
_, cnts, _ = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cv2.imshow('edged', edged)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
screenCnt = None
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
print(len(approx) == 4)
if len(approx) == 4:
screenCnt = approx
break
cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)
if screenCnt is not None and len(screenCnt) > 0:
return four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)
return orig
def extract_corners(self, image):
"""
Find the 4 corners of a binary image
:param image: binary image
:return: 4 main vertices or None
"""
cnts, _ = cv2.findContours(image.copy(),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2:]
cnt = cnts[0]
_, _, h, w = cv2.boundingRect(cnt)
epsilon = min(h, w) * 0.5
vertices = cv2.approxPolyDP(cnt, epsilon, True)
vertices = cv2.convexHull(vertices, clockwise=True)
vertices = self.correct_vertices(vertices)
return vertices
def homography(self, img, outdir_name=''):
orig = img
# 2??????
gray = cv2.cvtColor(orig, cv2.COLOR_BGR2GRAY)
gauss = cv2.GaussianBlur(gray, (5, 5), 0)
canny = cv2.Canny(gauss, 50, 150)
# 2??????????
contours = cv2.findContours(canny, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)[1]
# ???????????
contours.sort(key=cv2.contourArea, reverse=True)
if len(contours) > 0:
arclen = cv2.arcLength(contours[0], True)
# ???????????
approx = cv2.approxPolyDP(contours[0], 0.01 * arclen, True)
# warp = approx.copy()
if len(approx) >= 4:
self.last_approx = approx.copy()
elif self.last_approx is not None:
approx = self.last_approx
else:
approx = self.last_approx
rect = self.get_rect_by_points(approx)
# warped = self.transform_by4(orig, warp[:, 0, :])
return orig[rect[0]:rect[1], rect[2]:rect[3]]
def find_squares(img, cos_limit = 0.1):
print('search for squares with threshold %f' % cos_limit)
img = cv2.GaussianBlur(img, (5, 5), 0)
squares = []
for gray in cv2.split(img):
for thrs in xrange(0, 255, 26):
if thrs == 0:
bin = cv2.Canny(gray, 0, 50, apertureSize=5)
bin = cv2.dilate(bin, None)
else:
retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
cnt_len = cv2.arcLength(cnt, True)
cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
cnt = cnt.reshape(-1, 2)
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
if max_cos < cos_limit :
squares.append(cnt)
else:
#print('dropped a square with max_cos %f' % max_cos)
pass
return squares
###
### Version V2. Collect meta-data along the way, with commentary added.
###
def diff_rect(img1, img2, pos=None):
"""find counters include pos in differences between img1 & img2 (cv2 images)"""
diff = cv2.absdiff(img1, img2)
diff = cv2.GaussianBlur(diff, (3, 3), 0)
edges = cv2.Canny(diff, 100, 200)
_, thresh = cv2.threshold(edges, 0, 255, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
if not contours:
return None
contours.sort(key=lambda c: len(c))
# no pos provide, just return the largest different area rect
if pos is None:
cnt = contours[-1]
x0, y0, w, h = cv2.boundingRect(cnt)
x1, y1 = x0+w, y0+h
return (x0, y0, x1, y1)
# else the rect should contain the pos
x, y = pos
for i in range(len(contours)):
cnt = contours[-1-i]
x0, y0, w, h = cv2.boundingRect(cnt)
x1, y1 = x0+w, y0+h
if x0 <= x <= x1 and y0 <= y <= y1:
return (x0, y0, x1, y1)
def find_contours(self, img):
thresh_img = self.threshold(img)
_, contours, _ = cv2.findContours(thresh_img, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
result = []
for cnt in contours:
approx = cv2.approxPolyDP(cnt, 0.01*cv2.arcLength(cnt, True), True)
if self.draw_approx:
cv2.drawContours(self.out, [approx], -1, self.BLUE, 2, lineType=8)
if len(approx) > 3 and len(approx) < 15:
_, _, w, h = cv2.boundingRect(approx)
if h > self.min_height and w > self.min_width:
hull = cv2.convexHull(cnt)
approx2 = cv2.approxPolyDP(hull,0.01*cv2.arcLength(hull,True),True)
if self.draw_approx2:
cv2.drawContours(self.out, [approx2], -1, self.GREEN, 2, lineType=8)
result.append(approx2)
return result
def find_center(self, name, frame, mask, min_radius):
if name not in self.pts:
self.pts[name] = deque(maxlen=self.params['tracking']['buffer_size'])
# find contours in the mask and initialize the current (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
# only proceed if at least one contour was found
if len(cnts) > 0:
# find the largest contour in the mask, then use it to compute the minimum enclosing circle and centroid
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
center = (int(x), int(y))
# only proceed if the radius meets a minimum size
if radius > min_radius:
# draw the circle and centroid on the frame, then update the list of tracked points
cv2.circle(frame, center, int(radius), (0, 255, 255), 2)
cv2.circle(frame, center, 5, (0, 0, 255), -1)
self.pts[name].appendleft(center)
smooth_points = 8
return (int(np.mean([self.pts[name][i][0] for i in range(min(smooth_points, len(self.pts[name])))])),
int(np.mean([self.pts[name][i][1] for i in range(min(smooth_points, len(self.pts[name])))]))), radius
return None, None
Artificial-potential-controller-2.py 文件源码
项目:Artificial-Potential-Field
作者: vampcoder
项目源码
文件源码
阅读 23
收藏 0
点赞 0
评论 0
def classify(img):
cimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img2 = cv2.medianBlur(cimg, 13)
ret, thresh1 = cv2.threshold(cimg, 100, 120, cv2.THRESH_BINARY)
t2 = copy.copy(thresh1)
x, y = thresh1.shape
arr = np.zeros((x, y, 3), np.uint8)
final_contours = []
image, contours, hierarchy = cv2.findContours(t2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
#cv2.imshow('image', image)
#k = cv2.waitKey(0)
for i in range(len(contours)):
cnt = contours[i]
if cv2.contourArea(cnt) > 3000 and cv2.contourArea(cnt) < 25000:
cv2.drawContours(img, [cnt], -1, [0, 255, 255])
cv2.fillConvexPoly(arr, cnt, [255, 255, 255])
final_contours.append(cnt)
#cv2.imshow('arr', arr)
#k = cv2.waitKey(0)
return arr
def diagContour(image):
#Find contours in the image the first and last returns dont matter so the _ is just a placeholder to ignore them
_, contours, _ = cv2.findContours(image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
#The contouring operation does some weird stuff to the image so this line just fills the whole thing with black
image.fill(0)
boundingRect = []
firstFail = []
#Loops through all contours bigger than minArea pixels. That number is tweakable and determined by testing
for j in [i for i in contours if cv2.contourArea(i) > minArea]:
#br is a (list/tuple)? of the form x, y, width, height where (x,y) is the (top/bottom)? (left/right)? corner
br = cv2.boundingRect(j)
if(abs(br[2]/br[3] - INDASPECT) < indAspectTol and cv2.contourArea(j)/(br[2]*br[3]) > covTol):
boundingRect.append(br)
else:
firstFail.append([br, br[2]/br[3], cv2.contourArea(j)/(br[2]*br[3])])
secondRound = []
for x in range(0, len(boundingRect)):
for y in range(x+1, len(boundingRect)):
i = boundingRect[x]
j = boundingRect[y]
secondRound.append([(x,y,i,j), (abs(i[1]-j[1]), i[3]/2), abs(i[0]-j[0])/i[1]])
for x in secondRound:
if(x[1][0] < x[1][1] and x[2] - GRPASPECT < grpAspectTol):
return [x[0][2], x[0][3]]
return None;
def findEllipses(edges):
contours, _ = cv2.findContours(edges.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
ellipseMask = np.zeros(edges.shape, dtype=np.uint8)
contourMask = np.zeros(edges.shape, dtype=np.uint8)
pi_4 = np.pi * 4
for i, contour in enumerate(contours):
if len(contour) < 5:
continue
area = cv2.contourArea(contour)
if area <= 100: # skip ellipses smaller then 10x10
continue
arclen = cv2.arcLength(contour, True)
circularity = (pi_4 * area) / (arclen * arclen)
ellipse = cv2.fitEllipse(contour)
poly = cv2.ellipse2Poly((int(ellipse[0][0]), int(ellipse[0][1])), (int(ellipse[1][0] / 2), int(ellipse[1][1] / 2)), int(ellipse[2]), 0, 360, 5)
# if contour is circular enough
if circularity > 0.6:
cv2.fillPoly(ellipseMask, [poly], 255)
continue
# if contour has enough similarity to an ellipse
similarity = cv2.matchShapes(poly.reshape((poly.shape[0], 1, poly.shape[1])), contour, cv2.cv.CV_CONTOURS_MATCH_I2, 0)
if similarity <= 0.2:
cv2.fillPoly(contourMask, [poly], 255)
return ellipseMask, contourMask
def extract_corners(self, image):
"""
Find the 4 corners of a binary image
:param image: binary image
:return: 4 main vertices or None
"""
cnts, _ = cv2.findContours(image.copy(),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2:]
cnt = cnts[0]
_, _, h, w = cv2.boundingRect(cnt)
epsilon = min(h, w) * 0.5
o_vertices = cv2.approxPolyDP(cnt, epsilon, True)
vertices = cv2.convexHull(o_vertices, clockwise=True)
vertices = self.correct_vertices(vertices)
if self.debug:
temp = cv2.cvtColor(image.copy(), cv2.COLOR_GRAY2BGR)
cv2.drawContours(temp, cnts, -1, (0, 255, 0), 10)
cv2.drawContours(temp, o_vertices, -1, (255, 0, 0), 30)
cv2.drawContours(temp, vertices, -1, (0, 0, 255), 20)
self.save2image(temp)
return vertices
def imgSeg_contour(img, b,g,r, per):
lower = np.array([0, 0, 0])
upper = np.array([b,g,r])
shapeMask = cv2.inRange(img, lower, upper)
#http://stackoverflow.com/questions/27746089/python-computer-vision-contours-too-many-values-to-unpack
_, cnts, hierarchy = cv2.findContours(shapeMask.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:4]
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, per * peri, True) ### 0.04 ###
if (len(approx) >= 4) and (len(approx) < 6):
break
return approx
def shapeFiltering(img):
contours = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[0]
if len(contours) == 0:
print "shapeFiltering: Error, no contours found"
return 1
good_shape = []
for c in contours:
x,y,w,h = cv2.boundingRect(c)
#if h == 0:
# continue
ratio = w / h
ratio_grade = ratio / (TMw / TMh)
if 0.2 < ratio_grade < 1.8:
good_shape.append(c)
return good_shape
BoundaryExtraction.py 文件源码
项目:SummerProject_MacularDegenerationDetection
作者: WDongYuan
项目源码
文件源码
阅读 22
收藏 0
点赞 0
评论 0
def EdgeDetection(img):
img = cv2.fastNlMeansDenoising(img,None,3,7,21)
_,img = cv2.threshold(img,30,255,cv2.THRESH_TOZERO)
denoise_img = img
laplacian = cv2.Laplacian(img,cv2.CV_64F)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5) # x
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3) # y
canny = cv2.Canny(img,100,200)
contour_image, contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
return {"denoise":denoise_img,"laplacian":laplacian,"canny":canny,"sobely":sobely,"sobelx":sobelx,"contour":contour_image}
# GrayScale Image Convertor
# https://extr3metech.wordpress.com
BoundaryExtraction.py 文件源码
项目:SummerProject_MacularDegenerationDetection
作者: WDongYuan
项目源码
文件源码
阅读 26
收藏 0
点赞 0
评论 0
def EdgeDetection(img):
img = cv2.fastNlMeansDenoising(img,None,3,7,21)
_,img = cv2.threshold(img,30,255,cv2.THRESH_TOZERO)
denoise_img = img
laplacian = cv2.Laplacian(img,cv2.CV_64F)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5) # x
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3) # y
canny = cv2.Canny(img,100,200)
contour_image, contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
return {"denoise":denoise_img,"laplacian":laplacian,"canny":canny,"sobely":sobely,"sobelx":sobelx,"contour":contour_image}
# GrayScale Image Convertor
# https://extr3metech.wordpress.com
def find_contour(self, img_src, Rxmin, Rymin, Rxmax, Rymax):
cv2.rectangle(img_src, (Rxmax, Rymax), (Rxmin, Rymin), (0, 255, 0), 0)
crop_res = img_src[Rymin: Rymax, Rxmin:Rxmax]
grey = cv2.cvtColor(crop_res, cv2.COLOR_BGR2GRAY)
_, thresh1 = cv2.threshold(grey, 127, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
cv2.imshow('Thresh', thresh1)
contours, hierchy = cv2.findContours(thresh1.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
# draw contour on threshold image
if len(contours) > 0:
cv2.drawContours(thresh1, contours, -1, (0, 255, 0), 3)
return contours, crop_res
# Check ConvexHull and Convexity Defects
utils.py 文件源码
项目:kaggle-dstl-satellite-imagery-feature-detection
作者: u1234x1234
项目源码
文件源码
阅读 30
收藏 0
点赞 0
评论 0
def polygonize_cv(mask, epsilon=1., min_area=10.):
contours, hierarchy = cv2.findContours(mask, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_KCOS)
# create approximate contours to have reasonable submission size
approx_contours = [cv2.approxPolyDP(cnt, epsilon, True)
for cnt in contours]
approx_contours = contours
if not contours:
return MultiPolygon()
# now messy stuff to associate parent and child contours
cnt_children = defaultdict(list)
child_contours = set()
assert hierarchy.shape[0] == 1
# http://docs.opencv.org/3.1.0/d9/d8b/tutorial_py_contours_hierarchy.html
for idx, (_, _, _, parent_idx) in enumerate(hierarchy[0]):
if parent_idx != -1:
child_contours.add(idx)
cnt_children[parent_idx].append(approx_contours[idx])
# create actual polygons filtering by area (removes artifacts)
all_polygons = []
for idx, cnt in enumerate(approx_contours):
if idx not in child_contours and cv2.contourArea(cnt) >= min_area:
assert cnt.shape[1] == 1
poly = Polygon(
shell=cnt[:, 0, :],
holes=[c[:, 0, :] for c in cnt_children.get(idx, [])
if cv2.contourArea(c) >= min_area])
all_polygons.append(poly)
# approximating polygons might have created invalid ones, fix them
all_polygons = MultiPolygon(all_polygons)
if not all_polygons.is_valid:
all_polygons = all_polygons.buffer(0)
# Sometimes buffer() converts a simple Multipolygon to just a Polygon,
# need to keep it a Multi throughout
if all_polygons.type == 'Polygon':
all_polygons = MultiPolygon([all_polygons])
return all_polygons
def process_img(img):
original_image=img
processed_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
processed_img = cv2.Canny(processed_img, threshold1=200, threshold2=300)
processed_img = cv2.GaussianBlur(processed_img, (3,3), 0 )
copy=processed_img
vertices = np.array([[30, 240], [30, 100], [195, 100], [195, 240]])
processed_img = roi(processed_img, np.int32([vertices]))
verticesP = np.array([[30, 270], [30, 230], [197, 230], [197, 270]])
platform = roi(copy, np.int32([verticesP]))
# edges
#lines = cv2.HoughLinesP(platform, 1, np.pi/180, 180,np.array([]), 3, 2)
#draw_lines(processed_img,lines)
#draw_lines(original_image,lines)
#Platform lines
#imgray = cv2.cvtColor(platform,cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(platform,127,255,0)
im2, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(original_image, contours, -1, (0,255,0), 3)
try:
platformpos=contours[0][0][0]
except:
platformpos=[[0]]
circles = cv2.HoughCircles(processed_img, cv2.HOUGH_GRADIENT, 1, 20,
param1=90, param2=5, minRadius=1, maxRadius=3)
ballpos=draw_circles(original_image,circles=circles)
return processed_img,original_image,platform,platformpos,ballpos
def cannyThresholding(self, contour_retrieval_mode = cv2.RETR_LIST):
'''
contour_retrieval_mode is passed through as second argument to cv2.findContours
'''
# Attempt to match edges found in blue, green or red channels : collect all
channel = 0
for gray in cv2.split(self.img):
channel += 1
print('channel %d ' % channel)
title = self.tgen.next('channel-%d' % channel)
if self.show: ImageViewer(gray).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
found = {}
for thrs in xrange(0, 255, 26):
print('Using threshold %d' % thrs)
if thrs == 0:
print('First step')
bin = cv2.Canny(gray, 0, 50, apertureSize=5)
title = self.tgen.next('canny-%d' % channel)
if self.show: ImageViewer(bin).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
bin = cv2.dilate(bin, None)
title = self.tgen.next('canny-dilate-%d' % channel)
if self.show: ImageViewer(bin).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
else:
retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
title = self.tgen.next('channel-%d-threshold-%d' % (channel, thrs))
if self.show: ImageViewer(bin).show(window='Next threshold (n to continue)', destroy = self.destroy, info = self.info, thumbnailfn = title)
bin, contours, hierarchy = cv2.findContours(bin, contour_retrieval_mode, cv2.CHAIN_APPROX_SIMPLE)
title = self.tgen.next('channel-%d-threshold-%d-contours' % (channel, thrs))
if self.show: ImageViewer(bin).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
if contour_retrieval_mode == cv2.RETR_LIST or contour_retrieval_mode == cv2.RETR_EXTERNAL:
filteredContours = contours
else:
filteredContours = []
h = hierarchy[0]
for component in zip(contours, h):
currentContour = component[0]
currentHierarchy = component[1]
if currentHierarchy[3] < 0:
# Found the outermost parent component
filteredContours.append(currentContour)
print('Contours filtered. Input %d Output %d' % (len(contours), len(filteredContours)))
time.sleep(5)
for cnt in filteredContours:
cnt_len = cv2.arcLength(cnt, True)
cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
cnt_len = len(cnt)
cnt_area = cv2.contourArea(cnt)
cnt_isConvex = cv2.isContourConvex(cnt)
if cnt_len == 4 and (cnt_area > self.area_min and cnt_area < self.area_max) and cnt_isConvex:
cnt = cnt.reshape(-1, 2)
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
if max_cos < self.cos_limit :
sq = Square(cnt, cnt_area, cnt_isConvex, max_cos)
self.squares.append(sq)
else:
#print('dropped a square with max_cos %f' % max_cos)
pass
found[thrs] = len(self.squares)
print('Found %d quadrilaterals with threshold %d' % (len(self.squares), thrs))
def diff_rect(img1, img2, pos=None):
"""find counters include pos in differences between img1 & img2 (cv2 images)"""
diff = cv2.absdiff(img1, img2)
diff = cv2.GaussianBlur(diff, (3, 3), 0)
edges = cv2.Canny(diff, 100, 200)
_, thresh = cv2.threshold(edges, 0, 255, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
if not contours:
return None
contours.sort(key=lambda c: len(c))
# no pos provide, just return the largest different area rect
if pos is None:
cnt = contours[-1]
x0, y0, w, h = cv2.boundingRect(cnt)
x1, y1 = x0+w, y0+h
return (x0, y0, x1, y1)
# else the rect should contain the pos
x, y = pos
for i in range(len(contours)):
cnt = contours[-1-i]
x0, y0, w, h = cv2.boundingRect(cnt)
x1, y1 = x0+w, y0+h
if x0 <= x <= x1 and y0 <= y <= y1:
return (x0, y0, x1, y1)
def find_chars(img):
gray = np.array(img.convert("L"))
ret, mask = cv2.threshold(gray, 180, 255, cv2.THRESH_BINARY)
image_final = cv2.bitwise_and(gray, gray, mask=mask)
ret, new_img = cv2.threshold(image_final, 180, 255, cv2.THRESH_BINARY_INV)
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
dilated = cv2.dilate(new_img, kernel, iterations=1)
# Image.fromarray(dilated).save('out.png') # for debugging
_, contours, hierarchy = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
coords = []
for contour in contours:
# get rectangle bounding contour
[x, y, w, h] = cv2.boundingRect(contour)
# ignore large chars (probably not chars)
if w > 70 and h > 70:
continue
coords.append((x, y, w, h))
return coords
# find list of eye coordinates in image
def cropCircle(img, resize=None):
if resize:
if (img.shape[0] > img.shape[1]):
tile_size = (int(img.shape[1] * resize / img.shape[0]), resize)
else:
tile_size = (resize, int(img.shape[0] * resize / img.shape[1]))
img = cv2.resize(img, dsize=tile_size, interpolation=cv2.INTER_CUBIC)
else:
tile_size = img.shape
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY);
_, thresh = cv2.threshold(gray, 10, 255, cv2.THRESH_BINARY)
_, contours, _ = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
main_contour = sorted(contours, key=cv2.contourArea, reverse=True)[0]
ff = np.zeros((gray.shape[0], gray.shape[1]), 'uint8')
cv2.drawContours(ff, main_contour, -1, 1, 15)
ff_mask = np.zeros((gray.shape[0] + 2, gray.shape[1] + 2), 'uint8')
cv2.floodFill(ff, ff_mask, (int(gray.shape[1] / 2), int(gray.shape[0] / 2)), 1)
rect = maxRect(ff)
rectangle = [min(rect[0], rect[2]), max(rect[0], rect[2]), min(rect[1], rect[3]), max(rect[1], rect[3])]
img_crop = img[rectangle[0]:rectangle[1], rectangle[2]:rectangle[3]]
cv2.rectangle(ff, (min(rect[1], rect[3]), min(rect[0], rect[2])), (max(rect[1], rect[3]), max(rect[0], rect[2])), 3,
2)
return [img_crop, rectangle, tile_size]
def test_initial_pass_through_compare(self):
original = cv2.imread(os.path.join(self.provider.assets, "start_screen.png"))
against = self.provider.get_img_from_screen_shot()
wrong = cv2.imread(os.path.join(self.provider.assets, "battle.png"))
# convert the images to grayscale
original = mask_image([127], [255], cv2.cvtColor(original, cv2.COLOR_BGR2GRAY), True)
against = mask_image([127], [255], cv2.cvtColor(against, cv2.COLOR_BGR2GRAY), True)
wrong = mask_image([127], [255], cv2.cvtColor(wrong, cv2.COLOR_BGR2GRAY), True)
# initialize the figure
(score, diff) = compare_ssim(original, against, full=True)
diff = (diff * 255).astype("uint8")
self.assertTrue(score > .90, 'If this is less then .90 the initial compare of the app will fail')
(score, nothing) = compare_ssim(original, wrong, full=True)
self.assertTrue(score < .90)
if self.__debug_pictures__:
# threshold the difference image, followed by finding contours to
# obtain the regions of the two input images that differ
thresh = cv2.threshold(diff, 0, 255,
cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0]
# loop over the contours
for c in cnts:
# compute the bounding box of the contour and then draw the
# bounding box on both input images to represent where the two
# images differ
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(original, (x, y), (x + w, y + h), (0, 0, 255), 2)
cv2.rectangle(against, (x, y), (x + w, y + h), (0, 0, 255), 2)
# show the output images
diffs = ("Original", original), ("Modified", against), ("Diff", diff), ("Thresh", thresh)
images = ("Original", original), ("Against", against), ("Wrong", wrong)
self.setup_compare_images(diffs)
self.setup_compare_images(images)
def getContours(img,kernel=(10,10)):
#Define kernel
kernel = np.ones(kernel, np.uint8)
#Open to erode small patches
thresh = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
#Close little holes
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE,kernel, iterations=4)
#Find contours
#contours=skimsr.find_contours(thresh,0)
thresh=thresh.astype('uint8')
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
areas=[]
for c in contours:
areas.append(cv2.contourArea(c))
return contours,thresh,areas
def findSignificantContours(img, sobel_8u, sobel):
image, contours, heirarchy = cv2.findContours(sobel_8u, \
cv2.RETR_EXTERNAL, \
cv2.CHAIN_APPROX_SIMPLE)
mask = np.ones(image.shape[:2], dtype="uint8") * 255
level1 = []
for i, tupl in enumerate(heirarchy[0]):
if tupl[3] == -1:
tupl = np.insert(tupl, 0, [i])
level1.append(tupl)
significant = []
tooSmall = sobel_8u.size * 10 / 100
for tupl in level1:
contour = contours[tupl[0]];
area = cv2.contourArea(contour)
if area > tooSmall:
cv2.drawContours(mask, \
[contour], 0, (0, 255, 0), \
2, cv2.LINE_AA, maxLevel=1)
significant.append([contour, area])
significant.sort(key=lambda x: x[1])
significant = [x[0] for x in significant];
peri = cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
mask = sobel.copy()
mask[mask > 0] = 0
cv2.fillPoly(mask, significant, 255, 0)
mask = np.logical_not(mask)
img[mask] = 0;
return img
def draw_contours(self):
""""""
# contours all the objects found
# (findContours changes the source image,
# hence copy)
contours, _ = cv2.findContours(self.mask.copy(),
cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
# rectangles
for contour in contours:
size = cv2.contourArea(contour)
if size > self.threshold: # only larger objects
ret_x, ret_y, ret_w, ret_h = cv2.boundingRect(contour)
cv2.rectangle(self.display, (ret_x, ret_y),
(ret_x+ret_w,
ret_y+ret_h),
(0, 255, 255), 2)