def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
python类SubjectAlternativeName()的实例源码
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _decode_subject_alt_name(backend, ext):
return x509.SubjectAlternativeName(
_decode_general_names_extension(backend, ext)
)
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name