def create_csr(key, domains, must_staple=False):
"""
Creates a CSR in DER format for the specified key and domain names.
"""
assert domains
name = x509.Name([
x509.NameAttribute(NameOID.COMMON_NAME, domains[0]),
])
san = x509.SubjectAlternativeName([x509.DNSName(domain) for domain in domains])
csr = x509.CertificateSigningRequestBuilder().subject_name(name) \
.add_extension(san, critical=False)
if must_staple:
ocsp_must_staple = x509.TLSFeature(features=[x509.TLSFeatureType.status_request])
csr = csr.add_extension(ocsp_must_staple, critical=False)
csr = csr.sign(key, hashes.SHA256(), default_backend())
return export_csr_for_acme(csr)
python类SubjectAlternativeName()的实例源码
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
from pip._vendor import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _decode_subject_alt_name(backend, ext):
return x509.SubjectAlternativeName(
_decode_general_names_extension(backend, ext)
)
def _decode_subject_alt_name(backend, ext):
return x509.SubjectAlternativeName(
_decode_general_names_extension(backend, ext)
)
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _decode_subject_alt_name(backend, ext):
return x509.SubjectAlternativeName(
_decode_general_names_extension(backend, ext)
)
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def _decode_subject_alt_name(backend, ext):
return x509.SubjectAlternativeName(
_decode_general_names_extension(backend, ext)
)
def _decode_subject_alt_name(backend, ext):
return x509.SubjectAlternativeName(
_decode_general_names_extension(backend, ext)
)
def _decode_subject_alt_name(backend, ext):
return x509.SubjectAlternativeName(
_decode_general_names_extension(backend, ext)
)
def _decode_subject_alt_name(backend, ext):
return x509.SubjectAlternativeName(
_decode_general_names_extension(backend, ext)
)
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name
def set_csr_if_blank(self):
if not self.csr:
private_key = self.get_key()
builder = x509.CertificateSigningRequestBuilder()
builder = builder.subject_name(x509.Name([
x509.NameAttribute(NameOID.COMMON_NAME, self.get_common_name()),
x509.NameAttribute(NameOID.COUNTRY_NAME, u'{}'.format(self.account.country)),
x509.NameAttribute(NameOID.STATE_OR_PROVINCE_NAME, u'{}'.format(self.account.state)),
x509.NameAttribute(NameOID.LOCALITY_NAME, u'{}'.format(self.account.locality)),
x509.NameAttribute(NameOID.ORGANIZATION_NAME, u'{}'.format(self.account.organization_name)),
x509.NameAttribute(NameOID.ORGANIZATIONAL_UNIT_NAME, u'{}'.format(self.account.organizational_unit_name)),
]))
builder = builder.add_extension(x509.SubjectAlternativeName(self.get_san_entries()), critical=False)
csr = builder.sign(private_key, hashes.SHA256(), default_backend())
self.csr = csr.public_bytes(serialization.Encoding.PEM)
def get_certificate_domains(cert):
"""
Gets a list of all Subject Alternative Names in the specified certificate.
"""
for ext in cert.extensions:
ext = ext.value
if isinstance(ext, x509.SubjectAlternativeName):
return ext.get_values_for_type(x509.DNSName)
return []
def _dnsname_to_stdlib(name):
"""
Converts a dNSName SubjectAlternativeName field to the form used by the
standard library on the given Python version.
Cryptography produces a dNSName as a unicode string that was idna-decoded
from ASCII bytes. We need to idna-encode that string to get it back, and
then on Python 3 we also need to convert to unicode via UTF-8 (the stdlib
uses PyUnicode_FromStringAndSize on it, which decodes via UTF-8).
"""
def idna_encode(name):
"""
Borrowed wholesale from the Python Cryptography Project. It turns out
that we can't just safely call `idna.encode`: it can explode for
wildcard names. This avoids that problem.
"""
import idna
for prefix in [u'*.', u'.']:
if name.startswith(prefix):
name = name[len(prefix):]
return prefix.encode('ascii') + idna.encode(name)
return idna.encode(name)
name = idna_encode(name)
if sys.version_info >= (3, 0):
name = name.decode('utf-8')
return name