python类ECB的实例源码

keywrap.py 文件源码 项目:quickstart-git2s3 作者: aws-quickstart 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _wrap_core(wrapping_key, a, r, backend):
    # RFC 3394 Key Wrap - 2.2.1 (index method)
    encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
    n = len(r)
    for j in range(6):
        for i in range(n):
            # every encryption operation is a discrete 16 byte chunk (because
            # AES has a 128-bit block size) and since we're using ECB it is
            # safe to reuse the encryptor for the entire operation
            b = encryptor.update(a + r[i])
            # pack/unpack are safe as these are always 64-bit chunks
            a = struct.pack(
                ">Q", struct.unpack(">Q", b[:8])[0] ^ ((n * j) + i + 1)
            )
            r[i] = b[-8:]

    assert encryptor.finalize() == b""

    return a + b"".join(r)
keywrap.py 文件源码 项目:quickstart-git2s3 作者: aws-quickstart 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _unwrap_core(wrapping_key, a, r, backend):
    # Implement RFC 3394 Key Unwrap - 2.2.2 (index method)
    decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
    n = len(r)
    for j in reversed(range(6)):
        for i in reversed(range(n)):
            # pack/unpack are safe as these are always 64-bit chunks
            atr = struct.pack(
                ">Q", struct.unpack(">Q", a)[0] ^ ((n * j) + i + 1)
            ) + r[i]
            # every decryption operation is a discrete 16 byte chunk so
            # it is safe to reuse the decryptor for the entire operation
            b = decryptor.update(atr)
            a = b[:8]
            r[i] = b[-8:]

    assert decryptor.finalize() == b""
    return a, r
keywrap.py 文件源码 项目:noc-orchestrator 作者: DirceuSilvaLabs 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def aes_key_wrap(wrapping_key, key_to_wrap, backend):
    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    if len(key_to_wrap) < 16:
        raise ValueError("The key to wrap must be at least 16 bytes")

    if len(key_to_wrap) % 8 != 0:
        raise ValueError("The key to wrap must be a multiple of 8 bytes")

    # RFC 3394 Key Wrap - 2.2.1 (index method)
    encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
    a = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
    r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
    n = len(r)
    for j in range(6):
        for i in range(n):
            # every encryption operation is a discrete 16 byte chunk (because
            # AES has a 128-bit block size) and since we're using ECB it is
            # safe to reuse the encryptor for the entire operation
            b = encryptor.update(a + r[i])
            # pack/unpack are safe as these are always 64-bit chunks
            a = struct.pack(
                ">Q", struct.unpack(">Q", b[:8])[0] ^ ((n * j) + i + 1)
            )
            r[i] = b[-8:]

    assert encryptor.finalize() == b""

    return a + b"".join(r)
keywrap.py 文件源码 项目:noc-orchestrator 作者: DirceuSilvaLabs 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def aes_key_unwrap(wrapping_key, wrapped_key, backend):
    if len(wrapped_key) < 24:
        raise ValueError("Must be at least 24 bytes")

    if len(wrapped_key) % 8 != 0:
        raise ValueError("The wrapped key must be a multiple of 8 bytes")

    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    # Implement RFC 3394 Key Unwrap - 2.2.2 (index method)
    decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
    aiv = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"

    r = [wrapped_key[i:i + 8] for i in range(0, len(wrapped_key), 8)]
    a = r.pop(0)
    n = len(r)
    for j in reversed(range(6)):
        for i in reversed(range(n)):
            # pack/unpack are safe as these are always 64-bit chunks
            atr = struct.pack(
                ">Q", struct.unpack(">Q", a)[0] ^ ((n * j) + i + 1)
            ) + r[i]
            # every decryption operation is a discrete 16 byte chunk so
            # it is safe to reuse the decryptor for the entire operation
            b = decryptor.update(atr)
            a = b[:8]
            r[i] = b[-8:]

    assert decryptor.finalize() == b""

    if not bytes_eq(a, aiv):
        raise InvalidUnwrap()

    return b"".join(r)
keywrap.py 文件源码 项目:noc-orchestrator 作者: DirceuSilvaLabs 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def aes_key_wrap(wrapping_key, key_to_wrap, backend):
    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    if len(key_to_wrap) < 16:
        raise ValueError("The key to wrap must be at least 16 bytes")

    if len(key_to_wrap) % 8 != 0:
        raise ValueError("The key to wrap must be a multiple of 8 bytes")

    # RFC 3394 Key Wrap - 2.2.1 (index method)
    encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
    a = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
    r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
    n = len(r)
    for j in range(6):
        for i in range(n):
            # every encryption operation is a discrete 16 byte chunk (because
            # AES has a 128-bit block size) and since we're using ECB it is
            # safe to reuse the encryptor for the entire operation
            b = encryptor.update(a + r[i])
            # pack/unpack are safe as these are always 64-bit chunks
            a = struct.pack(
                ">Q", struct.unpack(">Q", b[:8])[0] ^ ((n * j) + i + 1)
            )
            r[i] = b[-8:]

    assert encryptor.finalize() == b""

    return a + b"".join(r)
keywrap.py 文件源码 项目:noc-orchestrator 作者: DirceuSilvaLabs 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def aes_key_unwrap(wrapping_key, wrapped_key, backend):
    if len(wrapped_key) < 24:
        raise ValueError("Must be at least 24 bytes")

    if len(wrapped_key) % 8 != 0:
        raise ValueError("The wrapped key must be a multiple of 8 bytes")

    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    # Implement RFC 3394 Key Unwrap - 2.2.2 (index method)
    decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
    aiv = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"

    r = [wrapped_key[i:i + 8] for i in range(0, len(wrapped_key), 8)]
    a = r.pop(0)
    n = len(r)
    for j in reversed(range(6)):
        for i in reversed(range(n)):
            # pack/unpack are safe as these are always 64-bit chunks
            atr = struct.pack(
                ">Q", struct.unpack(">Q", a)[0] ^ ((n * j) + i + 1)
            ) + r[i]
            # every decryption operation is a discrete 16 byte chunk so
            # it is safe to reuse the decryptor for the entire operation
            b = decryptor.update(atr)
            a = b[:8]
            r[i] = b[-8:]

    assert decryptor.finalize() == b""

    if not bytes_eq(a, aiv):
        raise InvalidUnwrap()

    return b"".join(r)
extract_tokens.py 文件源码 项目:python-miio 作者: rytilahti 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def decrypt_ztoken(ztoken):
        """Decrypt the given ztoken, used by apple."""
        if len(ztoken) <= 32:
            return ztoken

        keystring = '00000000000000000000000000000000'
        key = bytes.fromhex(keystring)
        cipher = Cipher(algorithms.AES(key), modes.ECB(),
                        backend=default_backend())
        decryptor = cipher.decryptor()
        token = decryptor.update(bytes.fromhex(ztoken[:64])) \
                + decryptor.finalize()

        return token.decode()
keywrap.py 文件源码 项目:aws-cfn-plex 作者: lordmuffin 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def aes_key_wrap(wrapping_key, key_to_wrap, backend):
    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    if len(key_to_wrap) < 16:
        raise ValueError("The key to wrap must be at least 16 bytes")

    if len(key_to_wrap) % 8 != 0:
        raise ValueError("The key to wrap must be a multiple of 8 bytes")

    # RFC 3394 Key Wrap - 2.2.1 (index method)
    encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
    a = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
    r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
    n = len(r)
    for j in range(6):
        for i in range(n):
            # every encryption operation is a discrete 16 byte chunk (because
            # AES has a 128-bit block size) and since we're using ECB it is
            # safe to reuse the encryptor for the entire operation
            b = encryptor.update(a + r[i])
            # pack/unpack are safe as these are always 64-bit chunks
            a = struct.pack(
                ">Q", struct.unpack(">Q", b[:8])[0] ^ ((n * j) + i + 1)
            )
            r[i] = b[-8:]

    assert encryptor.finalize() == b""

    return a + b"".join(r)
keywrap.py 文件源码 项目:aws-cfn-plex 作者: lordmuffin 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def aes_key_unwrap(wrapping_key, wrapped_key, backend):
    if len(wrapped_key) < 24:
        raise ValueError("Must be at least 24 bytes")

    if len(wrapped_key) % 8 != 0:
        raise ValueError("The wrapped key must be a multiple of 8 bytes")

    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    # Implement RFC 3394 Key Unwrap - 2.2.2 (index method)
    decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
    aiv = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"

    r = [wrapped_key[i:i + 8] for i in range(0, len(wrapped_key), 8)]
    a = r.pop(0)
    n = len(r)
    for j in reversed(range(6)):
        for i in reversed(range(n)):
            # pack/unpack are safe as these are always 64-bit chunks
            atr = struct.pack(
                ">Q", struct.unpack(">Q", a)[0] ^ ((n * j) + i + 1)
            ) + r[i]
            # every decryption operation is a discrete 16 byte chunk so
            # it is safe to reuse the decryptor for the entire operation
            b = decryptor.update(atr)
            a = b[:8]
            r[i] = b[-8:]

    assert decryptor.finalize() == b""

    if not bytes_eq(a, aiv):
        raise InvalidUnwrap()

    return b"".join(r)
keywrap.py 文件源码 项目:Intranet-Penetration 作者: yuxiaokui 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def aes_key_wrap(wrapping_key, key_to_wrap, backend):
    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    if len(key_to_wrap) < 16:
        raise ValueError("The key to wrap must be at least 16 bytes")

    if len(key_to_wrap) % 8 != 0:
        raise ValueError("The key to wrap must be a multiple of 8 bytes")

    # RFC 3394 Key Wrap - 2.2.1 (index method)
    encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
    a = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
    r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
    n = len(r)
    for j in range(6):
        for i in range(n):
            # every encryption operation is a discrete 16 byte chunk (because
            # AES has a 128-bit block size) and since we're using ECB it is
            # safe to reuse the encryptor for the entire operation
            b = encryptor.update(a + r[i])
            # pack/unpack are safe as these are always 64-bit chunks
            a = struct.pack(
                ">Q", struct.unpack(">Q", b[:8])[0] ^ ((n * j) + i + 1)
            )
            r[i] = b[-8:]

    assert encryptor.finalize() == b""

    return a + b"".join(r)
keywrap.py 文件源码 项目:Intranet-Penetration 作者: yuxiaokui 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def aes_key_unwrap(wrapping_key, wrapped_key, backend):
    if len(wrapped_key) < 24:
        raise ValueError("Must be at least 24 bytes")

    if len(wrapped_key) % 8 != 0:
        raise ValueError("The wrapped key must be a multiple of 8 bytes")

    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    # Implement RFC 3394 Key Unwrap - 2.2.2 (index method)
    decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
    aiv = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"

    r = [wrapped_key[i:i + 8] for i in range(0, len(wrapped_key), 8)]
    a = r.pop(0)
    n = len(r)
    for j in reversed(range(6)):
        for i in reversed(range(n)):
            # pack/unpack are safe as these are always 64-bit chunks
            atr = struct.pack(
                ">Q", struct.unpack(">Q", a)[0] ^ ((n * j) + i + 1)
            ) + r[i]
            # every decryption operation is a discrete 16 byte chunk so
            # it is safe to reuse the decryptor for the entire operation
            b = decryptor.update(atr)
            a = b[:8]
            r[i] = b[-8:]

    assert decryptor.finalize() == b""

    if not bytes_eq(a, aiv):
        raise InvalidUnwrap()

    return b"".join(r)
keywrap.py 文件源码 项目:Intranet-Penetration 作者: yuxiaokui 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def aes_key_wrap(wrapping_key, key_to_wrap, backend):
    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    if len(key_to_wrap) < 16:
        raise ValueError("The key to wrap must be at least 16 bytes")

    if len(key_to_wrap) % 8 != 0:
        raise ValueError("The key to wrap must be a multiple of 8 bytes")

    # RFC 3394 Key Wrap - 2.2.1 (index method)
    encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
    a = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
    r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
    n = len(r)
    for j in range(6):
        for i in range(n):
            # every encryption operation is a discrete 16 byte chunk (because
            # AES has a 128-bit block size) and since we're using ECB it is
            # safe to reuse the encryptor for the entire operation
            b = encryptor.update(a + r[i])
            # pack/unpack are safe as these are always 64-bit chunks
            a = struct.pack(
                ">Q", struct.unpack(">Q", b[:8])[0] ^ ((n * j) + i + 1)
            )
            r[i] = b[-8:]

    assert encryptor.finalize() == b""

    return a + b"".join(r)
keywrap.py 文件源码 项目:Intranet-Penetration 作者: yuxiaokui 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def aes_key_unwrap(wrapping_key, wrapped_key, backend):
    if len(wrapped_key) < 24:
        raise ValueError("Must be at least 24 bytes")

    if len(wrapped_key) % 8 != 0:
        raise ValueError("The wrapped key must be a multiple of 8 bytes")

    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    # Implement RFC 3394 Key Unwrap - 2.2.2 (index method)
    decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
    aiv = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"

    r = [wrapped_key[i:i + 8] for i in range(0, len(wrapped_key), 8)]
    a = r.pop(0)
    n = len(r)
    for j in reversed(range(6)):
        for i in reversed(range(n)):
            # pack/unpack are safe as these are always 64-bit chunks
            atr = struct.pack(
                ">Q", struct.unpack(">Q", a)[0] ^ ((n * j) + i + 1)
            ) + r[i]
            # every decryption operation is a discrete 16 byte chunk so
            # it is safe to reuse the decryptor for the entire operation
            b = decryptor.update(atr)
            a = b[:8]
            r[i] = b[-8:]

    assert decryptor.finalize() == b""

    if not bytes_eq(a, aiv):
        raise InvalidUnwrap()

    return b"".join(r)
keywrap.py 文件源码 项目:MKFQ 作者: maojingios 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def aes_key_wrap(wrapping_key, key_to_wrap, backend):
    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    if len(key_to_wrap) < 16:
        raise ValueError("The key to wrap must be at least 16 bytes")

    if len(key_to_wrap) % 8 != 0:
        raise ValueError("The key to wrap must be a multiple of 8 bytes")

    # RFC 3394 Key Wrap - 2.2.1 (index method)
    encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
    a = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
    r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
    n = len(r)
    for j in range(6):
        for i in range(n):
            # every encryption operation is a discrete 16 byte chunk (because
            # AES has a 128-bit block size) and since we're using ECB it is
            # safe to reuse the encryptor for the entire operation
            b = encryptor.update(a + r[i])
            # pack/unpack are safe as these are always 64-bit chunks
            a = struct.pack(
                ">Q", struct.unpack(">Q", b[:8])[0] ^ ((n * j) + i + 1)
            )
            r[i] = b[-8:]

    assert encryptor.finalize() == b""

    return a + b"".join(r)
keywrap.py 文件源码 项目:MKFQ 作者: maojingios 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def aes_key_unwrap(wrapping_key, wrapped_key, backend):
    if len(wrapped_key) < 24:
        raise ValueError("Must be at least 24 bytes")

    if len(wrapped_key) % 8 != 0:
        raise ValueError("The wrapped key must be a multiple of 8 bytes")

    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    # Implement RFC 3394 Key Unwrap - 2.2.2 (index method)
    decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
    aiv = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"

    r = [wrapped_key[i:i + 8] for i in range(0, len(wrapped_key), 8)]
    a = r.pop(0)
    n = len(r)
    for j in reversed(range(6)):
        for i in reversed(range(n)):
            # pack/unpack are safe as these are always 64-bit chunks
            atr = struct.pack(
                ">Q", struct.unpack(">Q", a)[0] ^ ((n * j) + i + 1)
            ) + r[i]
            # every decryption operation is a discrete 16 byte chunk so
            # it is safe to reuse the decryptor for the entire operation
            b = decryptor.update(atr)
            a = b[:8]
            r[i] = b[-8:]

    assert decryptor.finalize() == b""

    if not bytes_eq(a, aiv):
        raise InvalidUnwrap()

    return b"".join(r)
keywrap.py 文件源码 项目:MKFQ 作者: maojingios 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def aes_key_wrap(wrapping_key, key_to_wrap, backend):
    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    if len(key_to_wrap) < 16:
        raise ValueError("The key to wrap must be at least 16 bytes")

    if len(key_to_wrap) % 8 != 0:
        raise ValueError("The key to wrap must be a multiple of 8 bytes")

    # RFC 3394 Key Wrap - 2.2.1 (index method)
    encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
    a = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
    r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
    n = len(r)
    for j in range(6):
        for i in range(n):
            # every encryption operation is a discrete 16 byte chunk (because
            # AES has a 128-bit block size) and since we're using ECB it is
            # safe to reuse the encryptor for the entire operation
            b = encryptor.update(a + r[i])
            # pack/unpack are safe as these are always 64-bit chunks
            a = struct.pack(
                ">Q", struct.unpack(">Q", b[:8])[0] ^ ((n * j) + i + 1)
            )
            r[i] = b[-8:]

    assert encryptor.finalize() == b""

    return a + b"".join(r)
keywrap.py 文件源码 项目:MKFQ 作者: maojingios 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def aes_key_unwrap(wrapping_key, wrapped_key, backend):
    if len(wrapped_key) < 24:
        raise ValueError("Must be at least 24 bytes")

    if len(wrapped_key) % 8 != 0:
        raise ValueError("The wrapped key must be a multiple of 8 bytes")

    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    # Implement RFC 3394 Key Unwrap - 2.2.2 (index method)
    decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
    aiv = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"

    r = [wrapped_key[i:i + 8] for i in range(0, len(wrapped_key), 8)]
    a = r.pop(0)
    n = len(r)
    for j in reversed(range(6)):
        for i in reversed(range(n)):
            # pack/unpack are safe as these are always 64-bit chunks
            atr = struct.pack(
                ">Q", struct.unpack(">Q", a)[0] ^ ((n * j) + i + 1)
            ) + r[i]
            # every decryption operation is a discrete 16 byte chunk so
            # it is safe to reuse the decryptor for the entire operation
            b = decryptor.update(atr)
            a = b[:8]
            r[i] = b[-8:]

    assert decryptor.finalize() == b""

    if not bytes_eq(a, aiv):
        raise InvalidUnwrap()

    return b"".join(r)
keywrap.py 文件源码 项目:OneClickDTU 作者: satwikkansal 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def aes_key_wrap(wrapping_key, key_to_wrap, backend):
    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    if len(key_to_wrap) < 16:
        raise ValueError("The key to wrap must be at least 16 bytes")

    if len(key_to_wrap) % 8 != 0:
        raise ValueError("The key to wrap must be a multiple of 8 bytes")

    # RFC 3394 Key Wrap - 2.2.1 (index method)
    encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
    a = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
    r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
    n = len(r)
    for j in range(6):
        for i in range(n):
            # every encryption operation is a discrete 16 byte chunk (because
            # AES has a 128-bit block size) and since we're using ECB it is
            # safe to reuse the encryptor for the entire operation
            b = encryptor.update(a + r[i])
            # pack/unpack are safe as these are always 64-bit chunks
            a = struct.pack(
                ">Q", struct.unpack(">Q", b[:8])[0] ^ ((n * j) + i + 1)
            )
            r[i] = b[-8:]

    assert encryptor.finalize() == b""

    return a + b"".join(r)
keywrap.py 文件源码 项目:OneClickDTU 作者: satwikkansal 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def aes_key_unwrap(wrapping_key, wrapped_key, backend):
    if len(wrapped_key) < 24:
        raise ValueError("Must be at least 24 bytes")

    if len(wrapped_key) % 8 != 0:
        raise ValueError("The wrapped key must be a multiple of 8 bytes")

    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    # Implement RFC 3394 Key Unwrap - 2.2.2 (index method)
    decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
    aiv = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"

    r = [wrapped_key[i:i + 8] for i in range(0, len(wrapped_key), 8)]
    a = r.pop(0)
    n = len(r)
    for j in reversed(range(6)):
        for i in reversed(range(n)):
            # pack/unpack are safe as these are always 64-bit chunks
            atr = struct.pack(
                ">Q", struct.unpack(">Q", a)[0] ^ ((n * j) + i + 1)
            ) + r[i]
            # every decryption operation is a discrete 16 byte chunk so
            # it is safe to reuse the decryptor for the entire operation
            b = decryptor.update(atr)
            a = b[:8]
            r[i] = b[-8:]

    assert decryptor.finalize() == b""

    if not bytes_eq(a, aiv):
        raise InvalidUnwrap()

    return b"".join(r)
backend.py 文件源码 项目:cryptography-pkcs11 作者: reaperhulk 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def cipher_supported(self, cipher, mode):
        # TODO: softhsm only supports AES and 3DES with ECB/CBC
        return (
            isinstance(cipher, (AES, TripleDES)) and
            isinstance(mode, (ECB, CBC))
        )
engine.py 文件源码 项目:deb-python-kmip 作者: openstack 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _handle_symmetric_padding(self,
                                  algorithm,
                                  plain_text,
                                  padding_method,
                                  undo_padding=False):
        # KMIP 1.3 test TC-STREAM-ENC-2-13.xml demonstrates a case
        # where an encrypt call for 3DES-ECB does not use padding if
        # the plaintext fits the blocksize of the algorithm. This does
        # not appear to be documented explicitly in the KMIP spec. It
        # also makes failures during unpadding after decryption
        # impossible to differentiate from cipher text/key mismatches.
        # For now, ALWAYS apply padding regardless of plain text length.
        if padding_method in self._symmetric_padding_methods.keys():
            padding_method = self._symmetric_padding_methods.get(
                padding_method
            )
            if undo_padding:
                padder = padding_method(algorithm.block_size).unpadder()
            else:
                padder = padding_method(algorithm.block_size).padder()
            plain_text = padder.update(plain_text)
            plain_text += padder.finalize()
        else:
            if padding_method is None:
                raise exceptions.InvalidField(
                    "Padding method is required."
                )
            else:
                raise exceptions.InvalidField(
                    "Padding method '{0}' is not supported.".format(
                        padding_method
                    )
                )
        return plain_text
keywrap.py 文件源码 项目:xxNet 作者: drzorm 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def aes_key_wrap(wrapping_key, key_to_wrap, backend):
    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    if len(key_to_wrap) < 16:
        raise ValueError("The key to wrap must be at least 16 bytes")

    if len(key_to_wrap) % 8 != 0:
        raise ValueError("The key to wrap must be a multiple of 8 bytes")

    # RFC 3394 Key Wrap - 2.2.1 (index method)
    encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
    a = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
    r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
    n = len(r)
    for j in range(6):
        for i in range(n):
            # every encryption operation is a discrete 16 byte chunk (because
            # AES has a 128-bit block size) and since we're using ECB it is
            # safe to reuse the encryptor for the entire operation
            b = encryptor.update(a + r[i])
            # pack/unpack are safe as these are always 64-bit chunks
            a = struct.pack(
                ">Q", struct.unpack(">Q", b[:8])[0] ^ ((n * j) + i + 1)
            )
            r[i] = b[-8:]

    assert encryptor.finalize() == b""

    return a + b"".join(r)
keywrap.py 文件源码 项目:xxNet 作者: drzorm 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def aes_key_unwrap(wrapping_key, wrapped_key, backend):
    if len(wrapped_key) < 24:
        raise ValueError("Must be at least 24 bytes")

    if len(wrapped_key) % 8 != 0:
        raise ValueError("The wrapped key must be a multiple of 8 bytes")

    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    # Implement RFC 3394 Key Unwrap - 2.2.2 (index method)
    decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
    aiv = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"

    r = [wrapped_key[i:i + 8] for i in range(0, len(wrapped_key), 8)]
    a = r.pop(0)
    n = len(r)
    for j in reversed(range(6)):
        for i in reversed(range(n)):
            # pack/unpack are safe as these are always 64-bit chunks
            atr = struct.pack(
                ">Q", struct.unpack(">Q", a)[0] ^ ((n * j) + i + 1)
            ) + r[i]
            # every decryption operation is a discrete 16 byte chunk so
            # it is safe to reuse the decryptor for the entire operation
            b = decryptor.update(atr)
            a = b[:8]
            r[i] = b[-8:]

    assert decryptor.finalize() == b""

    if not bytes_eq(a, aiv):
        raise InvalidUnwrap()

    return b"".join(r)
keywrap.py 文件源码 项目:xxNet 作者: drzorm 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def aes_key_wrap(wrapping_key, key_to_wrap, backend):
    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    if len(key_to_wrap) < 16:
        raise ValueError("The key to wrap must be at least 16 bytes")

    if len(key_to_wrap) % 8 != 0:
        raise ValueError("The key to wrap must be a multiple of 8 bytes")

    # RFC 3394 Key Wrap - 2.2.1 (index method)
    encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
    a = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
    r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
    n = len(r)
    for j in range(6):
        for i in range(n):
            # every encryption operation is a discrete 16 byte chunk (because
            # AES has a 128-bit block size) and since we're using ECB it is
            # safe to reuse the encryptor for the entire operation
            b = encryptor.update(a + r[i])
            # pack/unpack are safe as these are always 64-bit chunks
            a = struct.pack(
                ">Q", struct.unpack(">Q", b[:8])[0] ^ ((n * j) + i + 1)
            )
            r[i] = b[-8:]

    assert encryptor.finalize() == b""

    return a + b"".join(r)
keywrap.py 文件源码 项目:xxNet 作者: drzorm 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def aes_key_unwrap(wrapping_key, wrapped_key, backend):
    if len(wrapped_key) < 24:
        raise ValueError("Must be at least 24 bytes")

    if len(wrapped_key) % 8 != 0:
        raise ValueError("The wrapped key must be a multiple of 8 bytes")

    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    # Implement RFC 3394 Key Unwrap - 2.2.2 (index method)
    decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
    aiv = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"

    r = [wrapped_key[i:i + 8] for i in range(0, len(wrapped_key), 8)]
    a = r.pop(0)
    n = len(r)
    for j in reversed(range(6)):
        for i in reversed(range(n)):
            # pack/unpack are safe as these are always 64-bit chunks
            atr = struct.pack(
                ">Q", struct.unpack(">Q", a)[0] ^ ((n * j) + i + 1)
            ) + r[i]
            # every decryption operation is a discrete 16 byte chunk so
            # it is safe to reuse the decryptor for the entire operation
            b = decryptor.update(atr)
            a = b[:8]
            r[i] = b[-8:]

    assert decryptor.finalize() == b""

    if not bytes_eq(a, aiv):
        raise InvalidUnwrap()

    return b"".join(r)
keywrap.py 文件源码 项目:slack_scholar 作者: xLeitix 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def aes_key_wrap(wrapping_key, key_to_wrap, backend):
    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    if len(key_to_wrap) < 16:
        raise ValueError("The key to wrap must be at least 16 bytes")

    if len(key_to_wrap) % 8 != 0:
        raise ValueError("The key to wrap must be a multiple of 8 bytes")

    # RFC 3394 Key Wrap - 2.2.1 (index method)
    encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
    a = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
    r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
    n = len(r)
    for j in range(6):
        for i in range(n):
            # every encryption operation is a discrete 16 byte chunk (because
            # AES has a 128-bit block size) and since we're using ECB it is
            # safe to reuse the encryptor for the entire operation
            b = encryptor.update(a + r[i])
            # pack/unpack are safe as these are always 64-bit chunks
            a = struct.pack(
                ">Q", struct.unpack(">Q", b[:8])[0] ^ ((n * j) + i + 1)
            )
            r[i] = b[-8:]

    assert encryptor.finalize() == b""

    return a + b"".join(r)
keywrap.py 文件源码 项目:slack_scholar 作者: xLeitix 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def aes_key_unwrap(wrapping_key, wrapped_key, backend):
    if len(wrapped_key) < 24:
        raise ValueError("Must be at least 24 bytes")

    if len(wrapped_key) % 8 != 0:
        raise ValueError("The wrapped key must be a multiple of 8 bytes")

    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    # Implement RFC 3394 Key Unwrap - 2.2.2 (index method)
    decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
    aiv = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"

    r = [wrapped_key[i:i + 8] for i in range(0, len(wrapped_key), 8)]
    a = r.pop(0)
    n = len(r)
    for j in reversed(range(6)):
        for i in reversed(range(n)):
            # pack/unpack are safe as these are always 64-bit chunks
            atr = struct.pack(
                ">Q", struct.unpack(">Q", a)[0] ^ ((n * j) + i + 1)
            ) + r[i]
            # every decryption operation is a discrete 16 byte chunk so
            # it is safe to reuse the decryptor for the entire operation
            b = decryptor.update(atr)
            a = b[:8]
            r[i] = b[-8:]

    assert decryptor.finalize() == b""

    if not bytes_eq(a, aiv):
        raise InvalidUnwrap()

    return b"".join(r)
keywrap.py 文件源码 项目:RemoteTree 作者: deNULL 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def aes_key_wrap(wrapping_key, key_to_wrap, backend):
    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    if len(key_to_wrap) < 16:
        raise ValueError("The key to wrap must be at least 16 bytes")

    if len(key_to_wrap) % 8 != 0:
        raise ValueError("The key to wrap must be a multiple of 8 bytes")

    # RFC 3394 Key Wrap - 2.2.1 (index method)
    encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
    a = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
    r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
    n = len(r)
    for j in range(6):
        for i in range(n):
            # every encryption operation is a discrete 16 byte chunk (because
            # AES has a 128-bit block size) and since we're using ECB it is
            # safe to reuse the encryptor for the entire operation
            b = encryptor.update(a + r[i])
            # pack/unpack are safe as these are always 64-bit chunks
            a = struct.pack(
                ">Q", struct.unpack(">Q", b[:8])[0] ^ ((n * j) + i + 1)
            )
            r[i] = b[-8:]

    assert encryptor.finalize() == b""

    return a + b"".join(r)
keywrap.py 文件源码 项目:RemoteTree 作者: deNULL 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def aes_key_unwrap(wrapping_key, wrapped_key, backend):
    if len(wrapped_key) < 24:
        raise ValueError("Must be at least 24 bytes")

    if len(wrapped_key) % 8 != 0:
        raise ValueError("The wrapped key must be a multiple of 8 bytes")

    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    # Implement RFC 3394 Key Unwrap - 2.2.2 (index method)
    decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
    aiv = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"

    r = [wrapped_key[i:i + 8] for i in range(0, len(wrapped_key), 8)]
    a = r.pop(0)
    n = len(r)
    for j in reversed(range(6)):
        for i in reversed(range(n)):
            # pack/unpack are safe as these are always 64-bit chunks
            atr = struct.pack(
                ">Q", struct.unpack(">Q", a)[0] ^ ((n * j) + i + 1)
            ) + r[i]
            # every decryption operation is a discrete 16 byte chunk so
            # it is safe to reuse the decryptor for the entire operation
            b = decryptor.update(atr)
            a = b[:8]
            r[i] = b[-8:]

    assert decryptor.finalize() == b""

    if not bytes_eq(a, aiv):
        raise InvalidUnwrap()

    return b"".join(r)
keywrap.py 文件源码 项目:Docker-XX-Net 作者: kuanghy 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def aes_key_wrap(wrapping_key, key_to_wrap, backend):
    if len(wrapping_key) not in [16, 24, 32]:
        raise ValueError("The wrapping key must be a valid AES key length")

    if len(key_to_wrap) < 16:
        raise ValueError("The key to wrap must be at least 16 bytes")

    if len(key_to_wrap) % 8 != 0:
        raise ValueError("The key to wrap must be a multiple of 8 bytes")

    # RFC 3394 Key Wrap - 2.2.1 (index method)
    encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
    a = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
    r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
    n = len(r)
    for j in range(6):
        for i in range(n):
            # every encryption operation is a discrete 16 byte chunk (because
            # AES has a 128-bit block size) and since we're using ECB it is
            # safe to reuse the encryptor for the entire operation
            b = encryptor.update(a + r[i])
            # pack/unpack are safe as these are always 64-bit chunks
            a = struct.pack(
                ">Q", struct.unpack(">Q", b[:8])[0] ^ ((n * j) + i + 1)
            )
            r[i] = b[-8:]

    assert encryptor.finalize() == b""

    return a + b"".join(r)


问题


面经


文章

微信
公众号

扫码关注公众号