def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)
python类PKCS1v15()的实例源码
def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)
def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)
def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)
def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)
def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)
def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)
def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)
def verify(self, res):
"""Verify response from server
Taken from https://github.com/madeddie/python-bunq - Thanks!
:param res: request to be verified
:type res: requests.models.Response
"""
if not self.server_pubkey:
print('No server public key defined, skipping verification')
return
serv_headers = [
'X-Bunq-Client-Request-Id',
'X-Bunq-Client-Response-Id'
]
msg = '%s\n%s\n\n%s' % (
res.status_code,
'\n'.join(
['%s: %s' % (k, v) for k, v in sorted(
res.headers.items()
) if k in serv_headers]
),
res.text
)
signature = base64.b64decode(res.headers['X-Bunq-Server-Signature'])
try:
self.server_pubkey_pem.verify(
signature,
msg.encode(),
padding.PKCS1v15(),
hashes.SHA256()
)
except InvalidSignature:
print('Message failed verification, data might be tampered with')
return False
else:
return True
def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)
def sign(self, message):
canonicalization = NoFWSCanonicalization()
signer = self._key.signer(padding.PKCS1v15(), hashes.SHA1())
headers, body = _rfc822_parse(message)
h_field = []
for header, value in headers:
if self._signed_headers is None or header in self._signed_headers:
h_field.append(header)
header, value = canonicalization.canonicalize_header(
header, value)
signer.update(header)
signer.update(b":")
signer.update(value)
body = canonicalization.canonicalize_body(body)
if body:
signer.update(b"\r\n")
signer.update(body)
return _fold(
b"DomainKey-Signature: a=rsa-sha1; c=nofws; d={domain}; "
b"s={selector}; q=dns; h={headers}; b={signature}".format(
domain=self._domain,
selector=self._selector,
headers=b": ".join(h_field),
signature=base64.b64encode(signer.finalize())
)) + b"\r\n"
def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)
def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)
def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)
def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)
def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)
def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)
def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)
def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)
def encrypt(pubkey, password):
"""Encrypt password using given RSA public key and encode it with base64.
The encrypted password can only be decrypted by someone with the
private key (in this case, only Travis).
"""
key = load_key(pubkey)
encrypted_password = key.encrypt(password, PKCS1v15())
return base64.b64encode(encrypted_password)