def _read_data(self, stream, verbose = False):
"""Process frame data rows from the CSV stream."""
# Note that the frame_num indices do not necessarily start from zero,
# but the setter functions assume that the array indices do. This
# implementation just ignores the original frame numbers, the frames are
# renumbered from zero.
for row_num, row in enumerate(stream):
frame_num = int(row[0])
frame_t = float(row[1])
values = row[2:]
# if verbose: print "Processing row_num %d, frame_num %d, time %f." % (row_num, frame_num, frame_t)
# add the new frame time to each object storing a trajectory
for body in self.rigid_bodies.values():
body._add_frame(frame_t)
# process the columns of interest
for mapping in self._column_map:
# each mapping is a namedtuple with a setter method, column index, and axis name
mapping.setter( row_num, mapping.axis, values[mapping.column] )
# ================================================================
python类namedtuple()的实例源码
def paragraph(self):
"""Return the index within self.text of the current paragraph and of
the current line and current character (number of characters since the
start of the paragraph) within the paragraph
Returns: namedtuple (para_index, line_index, char_index)
"""
idx_para = idx_buffer = idx_line = idx_char = 0
done = False
for para in self.text:
for idx_line, line in enumerate(para):
if idx_buffer == self.buffer_idx_y:
done = True
break
idx_buffer += 1
if done is True:
break
idx_para += 1
idx_char = sum(map(len, self.text[idx_para][:idx_line])) + \
self.buffer_idx_x
p = namedtuple("para", ['para_index', 'line_index', 'char_index'])
return p(idx_para, idx_line, idx_char)
def test_exception_invalid_csv(self):
table_text = """nan = float("nan")
inf = float("inf")
TEST_TABLE_NAME = "test_table"
TEST_DB_NAME = "test_db"
NOT_EXIT_FILE_PATH = "/not/existing/file/__path__"
NamedTuple = namedtuple("NamedTuple", "attr_a attr_b")
NamedTupleEx = namedtuple("NamedTupleEx", "attr_a attr_b attr_c")
"""
loader = ptr.CsvTableTextLoader(table_text)
loader.table_name = "dummy"
with pytest.raises(ptr.InvalidDataError):
for _tabletuple in loader.load():
pass
def iter_units_for_relation_name(relation_name):
"""Iterate through all units in a relation
Generator that iterates through all the units in a relation and yields
a named tuple with rid and unit field names.
Usage:
data = [(u.rid, u.unit)
for u in iter_units_for_relation_name(relation_name)]
:param relation_name: string relation name
:yield: Named Tuple with rid and unit field names
"""
RelatedUnit = namedtuple('RelatedUnit', 'rid, unit')
for rid in relation_ids(relation_name):
for unit in related_units(rid):
yield RelatedUnit(rid, unit)
def parse_request_start_line(line):
"""Returns a (method, path, version) tuple for an HTTP 1.x request line.
The response is a `collections.namedtuple`.
>>> parse_request_start_line("GET /foo HTTP/1.1")
RequestStartLine(method='GET', path='/foo', version='HTTP/1.1')
"""
try:
method, path, version = line.split(" ")
except ValueError:
raise HTTPInputError("Malformed HTTP request line")
if not re.match(r"^HTTP/1\.[0-9]$", version):
raise HTTPInputError(
"Malformed HTTP version in HTTP Request-Line: %r" % version)
return RequestStartLine(method, path, version)
def parse_response_start_line(line):
"""Returns a (version, code, reason) tuple for an HTTP 1.x response line.
The response is a `collections.namedtuple`.
>>> parse_response_start_line("HTTP/1.1 200 OK")
ResponseStartLine(version='HTTP/1.1', code=200, reason='OK')
"""
line = native_str(line)
match = re.match("(HTTP/1.[0-9]) ([0-9]+) ([^\r]*)", line)
if not match:
raise HTTPInputError("Error parsing response start line")
return ResponseStartLine(match.group(1), int(match.group(2)),
match.group(3))
# _parseparam and _parse_header are copied and modified from python2.7's cgi.py
# The original 2.7 version of this code did not correctly support some
# combinations of semicolons and double quotes.
# It has also been modified to support valueless parameters as seen in
# websocket extension negotiations.
def parse_request_start_line(line):
"""Returns a (method, path, version) tuple for an HTTP 1.x request line.
The response is a `collections.namedtuple`.
>>> parse_request_start_line("GET /foo HTTP/1.1")
RequestStartLine(method='GET', path='/foo', version='HTTP/1.1')
"""
try:
method, path, version = line.split(" ")
except ValueError:
raise HTTPInputError("Malformed HTTP request line")
if not re.match(r"^HTTP/1\.[0-9]$", version):
raise HTTPInputError(
"Malformed HTTP version in HTTP Request-Line: %r" % version)
return RequestStartLine(method, path, version)
def parse_response_start_line(line):
"""Returns a (version, code, reason) tuple for an HTTP 1.x response line.
The response is a `collections.namedtuple`.
>>> parse_response_start_line("HTTP/1.1 200 OK")
ResponseStartLine(version='HTTP/1.1', code=200, reason='OK')
"""
line = native_str(line)
match = re.match("(HTTP/1.[0-9]) ([0-9]+) ([^\r]*)", line)
if not match:
raise HTTPInputError("Error parsing response start line")
return ResponseStartLine(match.group(1), int(match.group(2)),
match.group(3))
# _parseparam and _parse_header are copied and modified from python2.7's cgi.py
# The original 2.7 version of this code did not correctly support some
# combinations of semicolons and double quotes.
# It has also been modified to support valueless parameters as seen in
# websocket extension negotiations.
def parse_response_start_line(line):
"""Returns a (version, code, reason) tuple for an HTTP 1.x response line.
The response is a `collections.namedtuple`.
>>> parse_response_start_line("HTTP/1.1 200 OK")
ResponseStartLine(version='HTTP/1.1', code=200, reason='OK')
"""
line = native_str(line)
match = re.match("(HTTP/1.[0-9]) ([0-9]+) ([^\r]*)", line)
if not match:
raise HTTPInputError("Error parsing response start line")
return ResponseStartLine(match.group(1), int(match.group(2)),
match.group(3))
# _parseparam and _parse_header are copied and modified from python2.7's cgi.py
# The original 2.7 version of this code did not correctly support some
# combinations of semicolons and double quotes.
# It has also been modified to support valueless parameters as seen in
# websocket extension negotiations.
def test_get_network_data(self, time_mock, sleep_mock):
time_mock.side_effect = [1, 2]
Counter = namedtuple('Counter',
['bytes_sent', 'bytes_recv', 'packets_sent',
'packets_recv'])
first_counter = Counter(bytes_sent=54000, bytes_recv=12000,
packets_sent=50, packets_recv=100)
second_counter = Counter(bytes_sent=108000, bytes_recv=36000,
packets_sent=75, packets_recv=150)
m = mock.Mock()
m.side_effect = [
{'eth0': first_counter}, {'eth0': second_counter}
]
self.network.psutil.net_io_counters = m
kb_ul, kb_dl, p_ul, p_dl = self.network.get_network_data(
interface='eth0', delay=1)
self.assertEqual(kb_ul, 54000)
self.assertEqual(kb_dl, 24000)
self.assertEqual(p_ul, 25)
self.assertEqual(p_dl, 50)
dsb_a_eliasq6_mal2_s5_p8a1_all.py 文件源码
项目:dsb3
作者: EliasVansteenkiste
项目源码
文件源码
阅读 22
收藏 0
点赞 0
评论 0
def build_model():
l_in = nn.layers.InputLayer((None, n_candidates_per_patient,) + p_transform['patch_size'])
l_in_rshp = nn.layers.ReshapeLayer(l_in, (-1, 1,) + p_transform['patch_size'])
l_target = nn.layers.InputLayer((None,))
l = load_pretrained_model(l_in_rshp)
#ins = penultimate_layer.output_shape[1]
# l = conv3d(penultimate_layer, ins, filter_size=3, stride=2)
# #l = feat_red(l)
#
#
# l = nn.layers.DropoutLayer(l)
# #
# l = nn.layers.DenseLayer(l, num_units=256, W=nn.init.Orthogonal(),
# nonlinearity=nn.nonlinearities.rectify)
#l = nn.layers.DropoutLayer(l)
l = nn.layers.ReshapeLayer(l, (-1, n_candidates_per_patient, 1))
l_out = nn_lung.LogMeanExp(l,r=16, axis=(1, 2), name='LME')
return namedtuple('Model', ['l_in', 'l_out', 'l_target'])(l_in, l_out, l_target)
dsb_a_eliasx29_relias10_s5_p8a1.py 文件源码
项目:dsb3
作者: EliasVansteenkiste
项目源码
文件源码
阅读 21
收藏 0
点赞 0
评论 0
def build_model():
l_in = nn.layers.InputLayer((None, n_candidates_per_patient, ) + p_transform['patch_size'])
l_in_rshp = nn.layers.ReshapeLayer(l_in, (-1, 1,) + p_transform['patch_size'])
l_target = nn.layers.InputLayer((batch_size,))
penultimate_layer = load_pretrained_model(l_in_rshp)
l = dense(penultimate_layer, 128, name='dense_final')
l = nn.layers.DenseLayer(l, num_units=1, W=nn.init.Orthogonal(),
nonlinearity=nn.nonlinearities.sigmoid, name='dense_p_benign')
l = nn.layers.ReshapeLayer(l, (-1, n_candidates_per_patient, 1), name='reshape2patients')
l_out = nn_lung.LogMeanExp(l, r=8, axis=(1, 2), name='LME')
return namedtuple('Model', ['l_in', 'l_out', 'l_target'])(l_in, l_out, l_target)
def build_model():
l_in = nn.layers.InputLayer((None, n_candidates_per_patient, 1,) + p_transform['patch_size'])
l_in_rshp = nn.layers.ReshapeLayer(l_in, (-1, 1,) + p_transform['patch_size'])
l_target = nn.layers.InputLayer((batch_size,))
penultimate_layer = load_pretrained_model(l_in_rshp)
l = drop(penultimate_layer, name='drop_final2')
l = dense(l, 256, name='dense_final1')
l = drop(l, name='drop_final2')
l = dense(l, 256, name='dense_final2')
l = nn.layers.DenseLayer(l, num_units=1, W=nn.init.Orthogonal(),
nonlinearity=None, name='dense_p_benign')
l = nn.layers.ReshapeLayer(l, (-1, n_candidates_per_patient, 1), name='reshape2patients')
l_out = nn_lung.AggAllBenignExp(l, name='aggregate_all_nodules_benign')
return namedtuple('Model', ['l_in', 'l_out', 'l_target'])(l_in, l_out, l_target)
def build_model():
l_in = nn.layers.InputLayer((None, n_candidates_per_patient, 1,) + p_transform['patch_size'])
l_in_rshp = nn.layers.ReshapeLayer(l_in, (-1, 1,) + p_transform['patch_size'])
l_target = nn.layers.InputLayer((batch_size,))
penultimate_layer = load_pretrained_model(l_in_rshp)
l = drop(penultimate_layer, name='drop_final')
l = dense(l, 128, name='dense_final')
l = nn.layers.DenseLayer(l, num_units=1, W=nn.init.Orthogonal(),
nonlinearity=None, name='dense_p_benign')
l = nn.layers.ReshapeLayer(l, (-1, n_candidates_per_patient, 1), name='reshape2patients')
l_out = nn_lung.AggAllBenignExp(l, name='aggregate_all_nodules_benign')
return namedtuple('Model', ['l_in', 'l_out', 'l_target'])(l_in, l_out, l_target)
def build_model():
l_in = nn.layers.InputLayer((None, n_candidates_per_patient,) + p_transform['patch_size'])
l_in_rshp = nn.layers.ReshapeLayer(l_in, (-1, 1,) + p_transform['patch_size'])
l_target = nn.layers.InputLayer((batch_size,))
l = load_pretrained_model(l_in_rshp)
#ins = penultimate_layer.output_shape[1]
# l = conv3d(penultimate_layer, ins, filter_size=3, stride=2)
# #l = feat_red(l)
#
#
# l = nn.layers.DropoutLayer(l)
# #
# l = nn.layers.DenseLayer(l, num_units=256, W=nn.init.Orthogonal(),
# nonlinearity=nn.nonlinearities.rectify)
#l = nn.layers.DropoutLayer(l)
l = nn.layers.ReshapeLayer(l, (-1, n_candidates_per_patient, 1))
l_out = nn_lung.LogMeanExp(l,r=16, axis=(1, 2), name='LME')
return namedtuple('Model', ['l_in', 'l_out', 'l_target'])(l_in, l_out, l_target)
dsb_a_eliasx27_relias10_s5_p8a1.py 文件源码
项目:dsb3
作者: EliasVansteenkiste
项目源码
文件源码
阅读 25
收藏 0
点赞 0
评论 0
def build_model():
l_in = nn.layers.InputLayer((None, n_candidates_per_patient, ) + p_transform['patch_size'])
l_in_rshp = nn.layers.ReshapeLayer(l_in, (-1, 1,) + p_transform['patch_size'])
l_target = nn.layers.InputLayer((batch_size,))
penultimate_layer = load_pretrained_model(l_in_rshp)
l = dense(penultimate_layer, 128, name='dense_final')
l = nn.layers.DenseLayer(l, num_units=1, W=nn.init.Orthogonal(),
nonlinearity=nn.nonlinearities.sigmoid, name='dense_p_benign')
l = nn.layers.ReshapeLayer(l, (-1, n_candidates_per_patient, 1), name='reshape2patients')
l_out = nn_lung.LogMeanExp(l, r=8, axis=(1, 2), name='LME')
return namedtuple('Model', ['l_in', 'l_out', 'l_target'])(l_in, l_out, l_target)
dsb_a_eliasx28_relias10_s5_p8a1.py 文件源码
项目:dsb3
作者: EliasVansteenkiste
项目源码
文件源码
阅读 21
收藏 0
点赞 0
评论 0
def build_model():
l_in = nn.layers.InputLayer((None, n_candidates_per_patient, ) + p_transform['patch_size'])
l_in_rshp = nn.layers.ReshapeLayer(l_in, (-1, 1,) + p_transform['patch_size'])
l_target = nn.layers.InputLayer((batch_size,))
penultimate_layer = load_pretrained_model(l_in_rshp)
l = dense(penultimate_layer, 128, name='dense_final')
l = nn.layers.DenseLayer(l, num_units=1, W=nn.init.Orthogonal(),
nonlinearity=nn.nonlinearities.sigmoid, name='dense_p_benign')
l = nn.layers.ReshapeLayer(l, (-1, n_candidates_per_patient, 1), name='reshape2patients')
l_out = nn_lung.LogMeanExp(l, r=8, axis=(1, 2), name='LME')
return namedtuple('Model', ['l_in', 'l_out', 'l_target'])(l_in, l_out, l_target)
dsb_a_eliasx36_relias18_s5_p8a1.py 文件源码
项目:dsb3
作者: EliasVansteenkiste
项目源码
文件源码
阅读 22
收藏 0
点赞 0
评论 0
def build_model():
l_in = nn.layers.InputLayer((None, n_candidates_per_patient, ) + p_transform['patch_size'])
l_in_rshp = nn.layers.ReshapeLayer(l_in, (-1, 1,) + p_transform['patch_size'])
l_target = nn.layers.InputLayer((batch_size,))
penultimate_layer = load_pretrained_model(l_in_rshp)
l = nn.layers.DenseLayer(penultimate_layer, num_units=1, W=nn.init.Orthogonal(),
nonlinearity=nn.nonlinearities.sigmoid, name='dense_p_benign')
l = nn.layers.ReshapeLayer(l, (-1, n_candidates_per_patient, 1), name='reshape2patients')
l_out = nn_lung.LogMeanExp(l, r=8, axis=(1, 2), name='LME')
return namedtuple('Model', ['l_in', 'l_out', 'l_target'])(l_in, l_out, l_target)
dsb_a_eliasx35_relias18_s5_p8a1.py 文件源码
项目:dsb3
作者: EliasVansteenkiste
项目源码
文件源码
阅读 22
收藏 0
点赞 0
评论 0
def build_model():
l_in = nn.layers.InputLayer((None, n_candidates_per_patient, ) + p_transform['patch_size'])
l_in_rshp = nn.layers.ReshapeLayer(l_in, (-1, 1,) + p_transform['patch_size'])
l_target = nn.layers.InputLayer((batch_size,))
penultimate_layer = load_pretrained_model(l_in_rshp)
l = nn.layers.DenseLayer(penultimate_layer, num_units=1, W=nn.init.Orthogonal(),
nonlinearity=nn.nonlinearities.sigmoid, name='dense_p_benign')
l = nn.layers.ReshapeLayer(l, (-1, n_candidates_per_patient, 1), name='reshape2patients')
l_out = nn_lung.LogMeanExp(l, r=8, axis=(1, 2), name='LME')
return namedtuple('Model', ['l_in', 'l_out', 'l_target'])(l_in, l_out, l_target)