def COS(df, price='Close'):
"""
Cosine
"""
cos_list = []
i = 0
while i < len(df[price]):
cos = cmath.cos(df[price][i]).real
cos_list.append(cos)
i += 1
return cos_list
python类cos()的实例源码
def test_trig_hyperb_basic():
for x in (list(range(100)) + list(range(-100,0))):
t = x / 4.1
assert cos(mpf(t)).ae(math.cos(t))
assert sin(mpf(t)).ae(math.sin(t))
assert tan(mpf(t)).ae(math.tan(t))
assert cosh(mpf(t)).ae(math.cosh(t))
assert sinh(mpf(t)).ae(math.sinh(t))
assert tanh(mpf(t)).ae(math.tanh(t))
assert sin(1+1j).ae(cmath.sin(1+1j))
assert sin(-4-3.6j).ae(cmath.sin(-4-3.6j))
assert cos(1+1j).ae(cmath.cos(1+1j))
assert cos(-4-3.6j).ae(cmath.cos(-4-3.6j))
def test_degrees():
assert cos(0*degree) == 1
assert cos(90*degree).ae(0)
assert cos(180*degree).ae(-1)
assert cos(270*degree).ae(0)
assert cos(360*degree).ae(1)
assert sin(0*degree) == 0
assert sin(90*degree).ae(1)
assert sin(180*degree).ae(0)
assert sin(270*degree).ae(-1)
assert sin(360*degree).ae(0)
def test_complex_functions():
for x in (list(range(10)) + list(range(-10,0))):
for y in (list(range(10)) + list(range(-10,0))):
z = complex(x, y)/4.3 + 0.01j
assert exp(mpc(z)).ae(cmath.exp(z))
assert log(mpc(z)).ae(cmath.log(z))
assert cos(mpc(z)).ae(cmath.cos(z))
assert sin(mpc(z)).ae(cmath.sin(z))
assert tan(mpc(z)).ae(cmath.tan(z))
assert sinh(mpc(z)).ae(cmath.sinh(z))
assert cosh(mpc(z)).ae(cmath.cosh(z))
assert tanh(mpc(z)).ae(cmath.tanh(z))
def test_complex_inverse_functions():
mp.dps = 15
iv.dps = 15
for (z1, z2) in random_complexes(30):
# apparently cmath uses a different branch, so we
# can't use it for comparison
assert sinh(asinh(z1)).ae(z1)
#
assert acosh(z1).ae(cmath.acosh(z1))
assert atanh(z1).ae(cmath.atanh(z1))
assert atan(z1).ae(cmath.atan(z1))
# the reason we set a big eps here is that the cmath
# functions are inaccurate
assert asin(z1).ae(cmath.asin(z1), rel_eps=1e-12)
assert acos(z1).ae(cmath.acos(z1), rel_eps=1e-12)
one = mpf(1)
for i in range(-9, 10, 3):
for k in range(-9, 10, 3):
a = 0.9*j*10**k + 0.8*one*10**i
b = cos(acos(a))
assert b.ae(a)
b = sin(asin(a))
assert b.ae(a)
one = mpf(1)
err = 2*10**-15
for i in range(-9, 9, 3):
for k in range(-9, 9, 3):
a = -0.9*10**k + j*0.8*one*10**i
b = cosh(acosh(a))
assert b.ae(a, err)
b = sinh(asinh(a))
assert b.ae(a, err)
def test_mpcfun_real_imag():
mp.dps = 15
x = mpf(0.3)
y = mpf(0.4)
assert exp(mpc(x,0)) == exp(x)
assert exp(mpc(0,y)) == mpc(cos(y),sin(y))
assert cos(mpc(x,0)) == cos(x)
assert sin(mpc(x,0)) == sin(x)
assert cos(mpc(0,y)) == cosh(y)
assert sin(mpc(0,y)) == mpc(0,sinh(y))
assert cospi(mpc(x,0)) == cospi(x)
assert sinpi(mpc(x,0)) == sinpi(x)
assert cospi(mpc(0,y)).ae(cosh(pi*y))
assert sinpi(mpc(0,y)).ae(mpc(0,sinh(pi*y)))
c, s = cospi_sinpi(mpc(x,0))
assert c == cospi(x)
assert s == sinpi(x)
c, s = cospi_sinpi(mpc(0,y))
assert c.ae(cosh(pi*y))
assert s.ae(mpc(0,sinh(pi*y)))
c, s = cos_sin(mpc(x,0))
assert c == cos(x)
assert s == sin(x)
c, s = cos_sin(mpc(0,y))
assert c == cosh(y)
assert s == mpc(0,sinh(y))
def _sinpi_real(x):
if x < 0:
return -_sinpi_real(-x)
n, r = divmod(x, 0.5)
r *= pi
n %= 4
if n == 0: return math.sin(r)
if n == 1: return math.cos(r)
if n == 2: return -math.sin(r)
if n == 3: return -math.cos(r)
def _cospi_real(x):
if x < 0:
x = -x
n, r = divmod(x, 0.5)
r *= pi
n %= 4
if n == 0: return math.cos(r)
if n == 1: return -math.sin(r)
if n == 2: return -math.cos(r)
if n == 3: return math.sin(r)
def _sinpi_complex(z):
if z.real < 0:
return -_sinpi_complex(-z)
n, r = divmod(z.real, 0.5)
z = pi*complex(r, z.imag)
n %= 4
if n == 0: return cmath.sin(z)
if n == 1: return cmath.cos(z)
if n == 2: return -cmath.sin(z)
if n == 3: return -cmath.cos(z)
def _cospi_complex(z):
if z.real < 0:
z = -z
n, r = divmod(z.real, 0.5)
z = pi*complex(r, z.imag)
n %= 4
if n == 0: return cmath.cos(z)
if n == 1: return -cmath.sin(z)
if n == 2: return -cmath.cos(z)
if n == 3: return cmath.sin(z)
def test_trig_hyperb_basic():
for x in (list(range(100)) + list(range(-100,0))):
t = x / 4.1
assert cos(mpf(t)).ae(math.cos(t))
assert sin(mpf(t)).ae(math.sin(t))
assert tan(mpf(t)).ae(math.tan(t))
assert cosh(mpf(t)).ae(math.cosh(t))
assert sinh(mpf(t)).ae(math.sinh(t))
assert tanh(mpf(t)).ae(math.tanh(t))
assert sin(1+1j).ae(cmath.sin(1+1j))
assert sin(-4-3.6j).ae(cmath.sin(-4-3.6j))
assert cos(1+1j).ae(cmath.cos(1+1j))
assert cos(-4-3.6j).ae(cmath.cos(-4-3.6j))
def test_degrees():
assert cos(0*degree) == 1
assert cos(90*degree).ae(0)
assert cos(180*degree).ae(-1)
assert cos(270*degree).ae(0)
assert cos(360*degree).ae(1)
assert sin(0*degree) == 0
assert sin(90*degree).ae(1)
assert sin(180*degree).ae(0)
assert sin(270*degree).ae(-1)
assert sin(360*degree).ae(0)
def test_complex_functions():
for x in (list(range(10)) + list(range(-10,0))):
for y in (list(range(10)) + list(range(-10,0))):
z = complex(x, y)/4.3 + 0.01j
assert exp(mpc(z)).ae(cmath.exp(z))
assert log(mpc(z)).ae(cmath.log(z))
assert cos(mpc(z)).ae(cmath.cos(z))
assert sin(mpc(z)).ae(cmath.sin(z))
assert tan(mpc(z)).ae(cmath.tan(z))
assert sinh(mpc(z)).ae(cmath.sinh(z))
assert cosh(mpc(z)).ae(cmath.cosh(z))
assert tanh(mpc(z)).ae(cmath.tanh(z))
def test_complex_inverse_functions():
mp.dps = 15
iv.dps = 15
for (z1, z2) in random_complexes(30):
# apparently cmath uses a different branch, so we
# can't use it for comparison
assert sinh(asinh(z1)).ae(z1)
#
assert acosh(z1).ae(cmath.acosh(z1))
assert atanh(z1).ae(cmath.atanh(z1))
assert atan(z1).ae(cmath.atan(z1))
# the reason we set a big eps here is that the cmath
# functions are inaccurate
assert asin(z1).ae(cmath.asin(z1), rel_eps=1e-12)
assert acos(z1).ae(cmath.acos(z1), rel_eps=1e-12)
one = mpf(1)
for i in range(-9, 10, 3):
for k in range(-9, 10, 3):
a = 0.9*j*10**k + 0.8*one*10**i
b = cos(acos(a))
assert b.ae(a)
b = sin(asin(a))
assert b.ae(a)
one = mpf(1)
err = 2*10**-15
for i in range(-9, 9, 3):
for k in range(-9, 9, 3):
a = -0.9*10**k + j*0.8*one*10**i
b = cosh(acosh(a))
assert b.ae(a, err)
b = sinh(asinh(a))
assert b.ae(a, err)
def test_mpcfun_real_imag():
mp.dps = 15
x = mpf(0.3)
y = mpf(0.4)
assert exp(mpc(x,0)) == exp(x)
assert exp(mpc(0,y)) == mpc(cos(y),sin(y))
assert cos(mpc(x,0)) == cos(x)
assert sin(mpc(x,0)) == sin(x)
assert cos(mpc(0,y)) == cosh(y)
assert sin(mpc(0,y)) == mpc(0,sinh(y))
assert cospi(mpc(x,0)) == cospi(x)
assert sinpi(mpc(x,0)) == sinpi(x)
assert cospi(mpc(0,y)).ae(cosh(pi*y))
assert sinpi(mpc(0,y)).ae(mpc(0,sinh(pi*y)))
c, s = cospi_sinpi(mpc(x,0))
assert c == cospi(x)
assert s == sinpi(x)
c, s = cospi_sinpi(mpc(0,y))
assert c.ae(cosh(pi*y))
assert s.ae(mpc(0,sinh(pi*y)))
c, s = cos_sin(mpc(x,0))
assert c == cos(x)
assert s == sin(x)
c, s = cos_sin(mpc(0,y))
assert c == cosh(y)
assert s == mpc(0,sinh(y))
def _sinpi_real(x):
if x < 0:
return -_sinpi_real(-x)
n, r = divmod(x, 0.5)
r *= pi
n %= 4
if n == 0: return math.sin(r)
if n == 1: return math.cos(r)
if n == 2: return -math.sin(r)
if n == 3: return -math.cos(r)
def _cospi_real(x):
if x < 0:
x = -x
n, r = divmod(x, 0.5)
r *= pi
n %= 4
if n == 0: return math.cos(r)
if n == 1: return -math.sin(r)
if n == 2: return -math.cos(r)
if n == 3: return math.sin(r)
def _sinpi_complex(z):
if z.real < 0:
return -_sinpi_complex(-z)
n, r = divmod(z.real, 0.5)
z = pi*complex(r, z.imag)
n %= 4
if n == 0: return cmath.sin(z)
if n == 1: return cmath.cos(z)
if n == 2: return -cmath.sin(z)
if n == 3: return -cmath.cos(z)
def _cospi_complex(z):
if z.real < 0:
z = -z
n, r = divmod(z.real, 0.5)
z = pi*complex(r, z.imag)
n %= 4
if n == 0: return cmath.cos(z)
if n == 1: return -cmath.sin(z)
if n == 2: return -cmath.cos(z)
if n == 3: return cmath.sin(z)
def test_trig_hyperb_basic():
for x in (list(range(100)) + list(range(-100,0))):
t = x / 4.1
assert cos(mpf(t)).ae(math.cos(t))
assert sin(mpf(t)).ae(math.sin(t))
assert tan(mpf(t)).ae(math.tan(t))
assert cosh(mpf(t)).ae(math.cosh(t))
assert sinh(mpf(t)).ae(math.sinh(t))
assert tanh(mpf(t)).ae(math.tanh(t))
assert sin(1+1j).ae(cmath.sin(1+1j))
assert sin(-4-3.6j).ae(cmath.sin(-4-3.6j))
assert cos(1+1j).ae(cmath.cos(1+1j))
assert cos(-4-3.6j).ae(cmath.cos(-4-3.6j))
def test_degrees():
assert cos(0*degree) == 1
assert cos(90*degree).ae(0)
assert cos(180*degree).ae(-1)
assert cos(270*degree).ae(0)
assert cos(360*degree).ae(1)
assert sin(0*degree) == 0
assert sin(90*degree).ae(1)
assert sin(180*degree).ae(0)
assert sin(270*degree).ae(-1)
assert sin(360*degree).ae(0)
def test_complex_functions():
for x in (list(range(10)) + list(range(-10,0))):
for y in (list(range(10)) + list(range(-10,0))):
z = complex(x, y)/4.3 + 0.01j
assert exp(mpc(z)).ae(cmath.exp(z))
assert log(mpc(z)).ae(cmath.log(z))
assert cos(mpc(z)).ae(cmath.cos(z))
assert sin(mpc(z)).ae(cmath.sin(z))
assert tan(mpc(z)).ae(cmath.tan(z))
assert sinh(mpc(z)).ae(cmath.sinh(z))
assert cosh(mpc(z)).ae(cmath.cosh(z))
assert tanh(mpc(z)).ae(cmath.tanh(z))
def test_complex_inverse_functions():
mp.dps = 15
iv.dps = 15
for (z1, z2) in random_complexes(30):
# apparently cmath uses a different branch, so we
# can't use it for comparison
assert sinh(asinh(z1)).ae(z1)
#
assert acosh(z1).ae(cmath.acosh(z1))
assert atanh(z1).ae(cmath.atanh(z1))
assert atan(z1).ae(cmath.atan(z1))
# the reason we set a big eps here is that the cmath
# functions are inaccurate
assert asin(z1).ae(cmath.asin(z1), rel_eps=1e-12)
assert acos(z1).ae(cmath.acos(z1), rel_eps=1e-12)
one = mpf(1)
for i in range(-9, 10, 3):
for k in range(-9, 10, 3):
a = 0.9*j*10**k + 0.8*one*10**i
b = cos(acos(a))
assert b.ae(a)
b = sin(asin(a))
assert b.ae(a)
one = mpf(1)
err = 2*10**-15
for i in range(-9, 9, 3):
for k in range(-9, 9, 3):
a = -0.9*10**k + j*0.8*one*10**i
b = cosh(acosh(a))
assert b.ae(a, err)
b = sinh(asinh(a))
assert b.ae(a, err)
def test_mpcfun_real_imag():
mp.dps = 15
x = mpf(0.3)
y = mpf(0.4)
assert exp(mpc(x,0)) == exp(x)
assert exp(mpc(0,y)) == mpc(cos(y),sin(y))
assert cos(mpc(x,0)) == cos(x)
assert sin(mpc(x,0)) == sin(x)
assert cos(mpc(0,y)) == cosh(y)
assert sin(mpc(0,y)) == mpc(0,sinh(y))
assert cospi(mpc(x,0)) == cospi(x)
assert sinpi(mpc(x,0)) == sinpi(x)
assert cospi(mpc(0,y)).ae(cosh(pi*y))
assert sinpi(mpc(0,y)).ae(mpc(0,sinh(pi*y)))
c, s = cospi_sinpi(mpc(x,0))
assert c == cospi(x)
assert s == sinpi(x)
c, s = cospi_sinpi(mpc(0,y))
assert c.ae(cosh(pi*y))
assert s.ae(mpc(0,sinh(pi*y)))
c, s = cos_sin(mpc(x,0))
assert c == cos(x)
assert s == sin(x)
c, s = cos_sin(mpc(0,y))
assert c == cosh(y)
assert s == mpc(0,sinh(y))
def _sinpi_real(x):
if x < 0:
return -_sinpi_real(-x)
n, r = divmod(x, 0.5)
r *= pi
n %= 4
if n == 0: return math.sin(r)
if n == 1: return math.cos(r)
if n == 2: return -math.sin(r)
if n == 3: return -math.cos(r)
def _cospi_real(x):
if x < 0:
x = -x
n, r = divmod(x, 0.5)
r *= pi
n %= 4
if n == 0: return math.cos(r)
if n == 1: return -math.sin(r)
if n == 2: return -math.cos(r)
if n == 3: return math.sin(r)
def _sinpi_complex(z):
if z.real < 0:
return -_sinpi_complex(-z)
n, r = divmod(z.real, 0.5)
z = pi*complex(r, z.imag)
n %= 4
if n == 0: return cmath.sin(z)
if n == 1: return cmath.cos(z)
if n == 2: return -cmath.sin(z)
if n == 3: return -cmath.cos(z)
def _cospi_complex(z):
if z.real < 0:
z = -z
n, r = divmod(z.real, 0.5)
z = pi*complex(r, z.imag)
n %= 4
if n == 0: return cmath.cos(z)
if n == 1: return -cmath.sin(z)
if n == 2: return -cmath.cos(z)
if n == 3: return cmath.sin(z)
def circulate(pos):
theta = 2*pi*pos/len(chords)
x = int(abs(scale+margin+scale*cos(theta)))
y = int(abs(scale+margin+scale*sin(theta)))
return x,y
def test_trig_hyperb_basic():
for x in (list(range(100)) + list(range(-100,0))):
t = x / 4.1
assert cos(mpf(t)).ae(math.cos(t))
assert sin(mpf(t)).ae(math.sin(t))
assert tan(mpf(t)).ae(math.tan(t))
assert cosh(mpf(t)).ae(math.cosh(t))
assert sinh(mpf(t)).ae(math.sinh(t))
assert tanh(mpf(t)).ae(math.tanh(t))
assert sin(1+1j).ae(cmath.sin(1+1j))
assert sin(-4-3.6j).ae(cmath.sin(-4-3.6j))
assert cos(1+1j).ae(cmath.cos(1+1j))
assert cos(-4-3.6j).ae(cmath.cos(-4-3.6j))