def setUp(self):
chainer.set_debug(True)
np.random.seed(0)
x = np.random.randint(0, 255, size=(224, 224, 3)).astype(np.float)
x -= np.array([[[102.9801, 115.9465, 122.7717]]])
self.x = np.expand_dims(x, 0).transpose(0, 3, 1, 2).astype(np.float32)
self.im_info = np.array([[224, 224, 1.6]])
self.gt_boxes = np.array([
[10, 10, 60, 200, 0],
[50, 100, 210, 210, 1],
[160, 40, 200, 70, 2]
])
python类set_debug()的实例源码
test_softmax_cross_entropy.py 文件源码
项目:chainer-segnet
作者: pfnet-research
项目源码
文件源码
阅读 21
收藏 0
点赞 0
评论 0
def setUp(self):
self.x = numpy.random.uniform(-1, 1, (2, 2)).astype(numpy.float32)
# `0` is required to avoid NaN
self.t = numpy.array([self.t_value, 0], dtype=numpy.int32)
self.original_debug = chainer.is_debug()
chainer.set_debug(True)
test_softmax_cross_entropy.py 文件源码
项目:chainer-segnet
作者: pfnet-research
项目源码
文件源码
阅读 17
收藏 0
点赞 0
评论 0
def tearDown(self):
chainer.set_debug(self.original_debug)
def setUp(self):
self.link = links.EmbedID(2, 2)
self.t = numpy.array([self.t_value], dtype=numpy.int32)
self.original_debug = chainer.is_debug()
chainer.set_debug(True)
def tearDown(self):
chainer.set_debug(self.original_debug)
def setUp(self):
self.original_debug = chainer.is_debug()
chainer.set_debug(True)
self.one = numpy.array([1], numpy.float32)
self.f = chainer.Function()
def tearDown(self):
chainer.set_debug(self.original_debug)
def setUp(self):
self.original_debug = chainer.is_debug()
chainer.set_debug(True)
self.one = numpy.array([1], numpy.float32)
self.f = chainer.Function()
def setUp(self):
self.x = numpy.random.uniform(-1, 1, (2, 2)).astype(numpy.float32)
# `0` is required to avoid NaN
self.t = numpy.array([self.t_value, 0], dtype=numpy.int32)
self.original_debug = chainer.is_debug()
chainer.set_debug(True)
def tearDown(self):
chainer.set_debug(self.original_debug)
def setUp(self):
self.x = numpy.random.uniform(-1, 1, (1, 2)).astype(numpy.float32)
self.t = numpy.array([self.t_value], dtype=numpy.int32)
self.original_debug = chainer.is_debug()
chainer.set_debug(True)
def tearDown(self):
chainer.set_debug(self.original_debug)
def setUp(self):
self.x = np.array([1], np.float32)
chainer.set_debug(True)
def setUp(self):
self.x = numpy.random.uniform(-1, 1, (2, 2)).astype(numpy.float32)
# `0` is required to avoid NaN
self.t = numpy.array([self.t_value, 0], dtype=numpy.int32)
self.original_debug = chainer.is_debug()
chainer.set_debug(True)
def tearDown(self):
chainer.set_debug(self.original_debug)
def main():
import random
# Model class options
model_parser = argparse.ArgumentParser(description='Model Parameters', add_help=False)
model_parser.add_argument('--model_name', type=str, help='Model name {"SimpleCNN", "MiddleCNN"}')
model_parser.add_argument('--init_model', type=str, help='Initialize the model from given file')
model_parser.add_argument('--n_classes', type=int, default=48, help='Number of classes')
model_args, remaining_argv = model_parser.parse_known_args()
# Model runtime options
runtime_parser = argparse.ArgumentParser(description='Runtime Parameters', add_help=False)
runtime_parser.add_argument('--gpu', type=int, help='GPU ID (negative value indicates CPU')
runtime_parser.add_argument('--test_dir', type=str, help='/path/to/test_dir')
runtime_parser.add_argument('--nb_output', type=int, default=10, help='Number of output images')
runtime_parser.add_argument('--save_dir', type=str, default='./grad_cam', help='Save directory')
runtime_args, remaining_argv = runtime_parser.parse_known_args(remaining_argv)
# merge options
parser = argparse.ArgumentParser(
description='Visualize Saliency',
parents=[model_parser, runtime_parser])
parser.add_argument('--debug', action='store_true', help='if specified, using chainer.set_debug()')
args = parser.parse_args()
chainer.set_debug(args.debug)
assert model_args.init_model is not None, "init_model must be specified."
# load model
grad_cam = build_gradcam_model(args.n_classes, args.model_name, args.init_model, args.gpu)
''' Visualization '''
for idx in range(len(fonts_dict)):
target_dir = os.path.join(args.test_dir, fonts_dict[idx])
if not os.path.isdir(target_dir):
continue
filenames = sorted(os.listdir(target_dir))
si = list(range(len(filenames)))
random.shuffle(si)
for j in range(args.nb_output):
filename = filenames[si[j]]
img = imread(os.path.join(target_dir, filename), mode='RGB').astype(np.float32)
arr = convert_to_array(img, args.gpu)
mask, pred_idx = grad_cam(arr, None)
if idx == pred_idx:
save_dir = os.path.join(args.save_dir, fonts_dict[idx])
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
save_cam_image(img, mask, os.path.join(save_dir, filename))
else:
print("true :", fonts_dict[idx], "!= predict :", fonts_dict[pred_idx])
def main():
# Model class options
model_parser = argparse.ArgumentParser(description='Model Parameters', add_help=False)
model_parser.add_argument('--model_name', type=str, help='Model name {"SimpleCNN", "MiddleCNN"}')
model_parser.add_argument('--init_model', type=str, help='Initialize the model from given file')
model_parser.add_argument('--n_classes', type=int, default=48, help='Number of classes')
model_args, remaining_argv = model_parser.parse_known_args()
# Model runtime options
runtime_parser = argparse.ArgumentParser(description='Runtime Parameters', add_help=False)
runtime_parser.add_argument('--gpu', type=int, default=-1, help='GPU ID (negative value indicates CPU')
runtime_parser.add_argument('--input_image', type=str, help='/path/to/input_image.jpg')
runtime_parser.add_argument('--target_label', type=str, help='If not specified, predicted label is used as target.')
runtime_parser.add_argument('--save_dir', type=str, default='./grad_cam', help='Save directory')
runtime_args, remaining_argv = runtime_parser.parse_known_args(remaining_argv)
# merge options
parser = argparse.ArgumentParser(
description='Visualize Saliency',
parents=[model_parser, runtime_parser])
parser.add_argument('--debug', action='store_true', help='if specified, using chainer.set_debug()')
args = parser.parse_args()
chainer.set_debug(args.debug)
assert runtime_args.input_image is not None, "input_image must be specified."
assert model_args.init_model is not None, "init_model must be specified."
''' Visualization '''
# read image
img = imread(args.input_image, mode='RGB').astype(np.float32)
# visualize
visualize(
img,
args.target_label,
args.model_name,
args.init_model,
args.n_classes,
args.save_dir,
args.gpu
)