python类training()的实例源码

train_feature_extractor.py 文件源码 项目:face-classifier-cnn 作者: nknytk 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def main(config_file):
    with open(config_file) as fp:
        conf = json.load(fp)['feature_extractor']

    model_class = getattr(cnn_feature_extractors, conf['model'])
    model = model_class(conf['n_classes'], conf['n_base_units'])

    resume_file = conf['out_file'] + '.to_resume'
    if os.path.exists(resume_file):
        chainer.serializers.load_npz(resume_file, model)
    optimizer = chainer.optimizers.Adam()
    optimizer.setup(model)

    device = conf.get('device', -1)
    train_dataset = create_dataset(os.path.join(conf['dataset_path'], 'train'))
    train_iter = chainer.iterators.SerialIterator(train_dataset, conf.get('batch_size', 10))
    updater = chainer.training.StandardUpdater(train_iter, optimizer, device=device)
    trainer = chainer.training.Trainer(updater, (conf['epoch'], 'epoch'), out='out')

    trainer.extend(extensions.dump_graph('main/loss'))
    trainer.extend(extensions.LogReport())
    trainer.extend(extensions.ProgressBar(update_interval=10))

    test_dataset_path = os.path.join(conf['dataset_path'], 'test')
    if os.path.exists(test_dataset_path):
        test_dataset = create_dataset(test_dataset_path)
        test_iter = chainer.iterators.SerialIterator(test_dataset, 20, repeat=False, shuffle=False)
        trainer.extend(extensions.Evaluator(test_iter, model, device=device))
        trainer.extend(extensions.PrintReport([
            'epoch', 'main/loss', 'validation/main/loss',
            'main/accuracy', 'validation/main/accuracy'
        ]))
    else:
        trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'main/accuracy']))

    trainer.run()

    model = model.to_cpu()
    chainer.serializers.save_npz(conf['out_file'], model)
evaluation.py 文件源码 项目:chainer-cyclegan 作者: Aixile 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def evaluation(gen_g, gen_f, test_image_folder, image_size=256, side=2):
    @chainer.training.make_extension()
    def _eval(trainer, it):
        xp = gen_g.xp
        batch = it.next()
        batchsize = len(batch)

        #x = []
        x = xp.zeros((batchsize, 3, image_size, image_size)).astype("f")
        t = xp.zeros((batchsize, 3, image_size, image_size)).astype("f")
        for i in range(batchsize):
            x[i, :] = xp.asarray(batch[i][0])
            t[i, :] = xp.asarray(batch[i][1])

        x = Variable(x)
        result = gen_g(x, test=True)
        img = result.data.get()

        img_c = img.reshape((side, side, 3, image_size, image_size))
        img_c = img_c.transpose(0,1,3,4,2)
        img_c = (img + 1) *127.5
        img_c = np.clip(img_c, 0, 255)
        img_c = img_c.astype(np.uint8)
        img_c = img_c.reshape((side, side, image_size, image_size, 3)).transpose(0,2,1,3,4).reshape((side*image_size, side*image_size, 3))[:,:,::-1]
        Image.fromarray(img_c).save(test_image_folder+"/iter_"+str(trainer.updater.iteration)+"_G.jpg")

        t = Variable(t)
        result = gen_f(t, test=True)
        img_t = result.data.get()
        img_t = img_t.reshape( (side, side, 3, image_size, image_size))
        img_t = img_t.transpose(0,1,3,4,2)
        img_t = (img + 1) *127.5
        img_t = np.clip(img_t, 0, 255)
        img_t = img_t.astype(np.uint8)
        img_t = img_t.reshape((side, side, image_size, image_size, 3)).transpose(0,2,1,3,4).reshape((side*image_size, side*image_size, 3))[:,:,::-1]
        #print(img_t)
        Image.fromarray(img_t).save(test_image_folder+"/iter_"+str(trainer.updater.iteration)+"_F.jpg")

    def evaluation(trainer):
        it = trainer.updater.get_iterator('test')
        _eval(trainer, it)

    return evaluation
chainer_model.py 文件源码 项目:char-rnn-text-generation 作者: yxtay 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def train_main(args):
    """
    trains model specfied in args.
    main method for train subcommand.
    """
    # load text
    with open(args.text_path) as f:
        text = f.read()
    logger.info("corpus length: %s.", len(text))

    # data iterator
    data_iter = DataIterator(text, args.batch_size, args.seq_len)

    # load or build model
    if args.restore:
        logger.info("restoring model.")
        load_path = args.checkpoint_path if args.restore is True else args.restore
        model = load_model(load_path)
    else:
        net = Network(vocab_size=VOCAB_SIZE,
                      embedding_size=args.embedding_size,
                      rnn_size=args.rnn_size,
                      num_layers=args.num_layers,
                      drop_rate=args.drop_rate)
        model = L.Classifier(net)

    # make checkpoint directory
    log_dir = make_dirs(args.checkpoint_path)
    with open("{}.json".format(args.checkpoint_path), "w") as f:
        json.dump(model.predictor.args, f, indent=2)
    chainer.serializers.save_npz(args.checkpoint_path, model)
    logger.info("model saved: %s.", args.checkpoint_path)

    # optimizer
    optimizer = chainer.optimizers.Adam(alpha=args.learning_rate)
    optimizer.setup(model)
    # clip gradient norm
    optimizer.add_hook(chainer.optimizer.GradientClipping(args.clip_norm))

    # trainer
    updater = BpttUpdater(data_iter, optimizer)
    trainer = chainer.training.Trainer(updater, (args.num_epochs, 'epoch'), out=log_dir)
    trainer.extend(extensions.snapshot_object(model, filename=os.path.basename(args.checkpoint_path)))
    trainer.extend(extensions.ProgressBar(update_interval=1))
    trainer.extend(extensions.LogReport())
    trainer.extend(extensions.PlotReport(y_keys=["main/loss"]))
    trainer.extend(LoggerExtension(text))

    # training start
    model.predictor.reset_state()
    logger.info("start of training.")
    time_train = time.time()
    trainer.run()

    # training end
    duration_train = time.time() - time_train
    logger.info("end of training, duration: %ds.", duration_train)
    # generate text
    seed = generate_seed(text)
    generate_text(model, seed, 1024, 3)
    return model
trainer.py 文件源码 项目:Comicolorization 作者: DwangoMediaVillage 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def create_trainer(
        config,
        project_path,
        updater,
        model,
        eval_func,
        iterator_test,
        iterator_train_varidation,
        loss_names,
        converter=chainer.dataset.convert.concat_examples,
):
    # type: (TrainConfig, str, any, typing.Dict, any, any, any, any, any) -> any
    def _make_evaluator(iterator):
        return utility.chainer_utility.NoVariableEvaluator(
            iterator,
            target=model,
            converter=converter,
            eval_func=eval_func,
            device=config.gpu,
        )

    trainer = chainer.training.Trainer(updater, out=project_path)

    log_trigger = (config.log_iteration, 'iteration')
    save_trigger = (config.save_iteration, 'iteration')

    eval_test_name = 'eval/test'
    eval_train_name = 'eval/train'

    snapshot = extensions.snapshot_object(model['main'], '{.updater.iteration}.model')
    trainer.extend(snapshot, trigger=save_trigger)

    trainer.extend(extensions.dump_graph('main/' + loss_names[0], out_name='main.dot'))

    trainer.extend(_make_evaluator(iterator_test), name=eval_test_name, trigger=log_trigger)
    trainer.extend(_make_evaluator(iterator_train_varidation), name=eval_train_name, trigger=log_trigger)

    report_target = []
    for evaluator_name in ['', eval_test_name + '/', eval_train_name + '/']:
        for model_name in ['main/']:
            for loss_name in loss_names:
                report_target.append(evaluator_name + model_name + loss_name)

    trainer.extend(extensions.LogReport(trigger=log_trigger, log_name="log.txt"))
    trainer.extend(extensions.PrintReport(report_target))

    return trainer
lstm_parser_old.py 文件源码 项目:depccg 作者: masashi-y 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def train(args):
    model = LSTMParser(args.model, args.word_emb_size, args.afix_emb_size, args.nlayers,
            args.hidden_dim, args.elu_dim, args.dep_dim, args.dropout_ratio)
    with open(args.model + "/params", "w") as f: log(args, f)

    if args.initmodel:
        print 'Load model from', args.initmodel
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print 'Load pretrained word embeddings from', args.pretrained
        model.load_pretrained_embeddings(args.pretrained)

    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()
        model.to_gpu()

    train = LSTMParserDataset(args.model, args.train)
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    val = LSTMParserDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.Adam(beta2=0.9)
    # optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
    optimizer.setup(model)
    optimizer.add_hook(WeightDecay(1e-6))
    # optimizer.add_hook(GradientClipping(5.))
    updater = training.StandardUpdater(train_iter, optimizer,
            device=args.gpu, converter=converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 1000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.Evaluator(val_iter, eval_model,
                    converter, device=args.gpu), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration',
        'main/tagging_accuracy', 'main/tagging_loss',
        'main/parsing_accuracy', 'main/parsing_loss',
        'validation/main/tagging_accuracy',
        'validation/main/parsing_accuracy'
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
lstm_tagger.py 文件源码 项目:depccg 作者: masashi-y 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def train(args):
    model = LSTMTagger(args.model, args.word_emb_size, args.afix_emb_size,
            args.nlayers, args.hidden_dim, args.relu_dim, args.dropout_ratio)
    with open(args.model + "/params", "w") as f:
            log(args, f)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print('Load pretrained word embeddings from', args.pretrained)
        model.load_pretrained_embeddings(args.pretrained)

    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()
        model.to_gpu()

    train = LSTMTaggerDataset(args.model, args.train)
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    val = LSTMTaggerDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
    optimizer.setup(model)
    optimizer.add_hook(WeightDecay(1e-6))
    optimizer.add_hook(GradientClipping(5.))
    updater = training.StandardUpdater(train_iter, optimizer,
            device=args.gpu, converter=converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 2000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.Evaluator(
        val_iter, eval_model, converter, device=args.gpu), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/loss', 'validation/main/loss',
        'main/accuracy', 'validation/main/accuracy',
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
ja_lstm_parser_bi.py 文件源码 项目:depccg 作者: masashi-y 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def train(args):
    model = BiaffineJaLSTMParser(args.model, args.word_emb_size, args.char_emb_size,
            args.nlayers, args.hidden_dim, args.dep_dim, args.dropout_ratio)
    with open(args.model + "/params", "w") as f: log(args, f)

    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print('Load pretrained word embeddings from', args.pretrained)
        model.load_pretrained_embeddings(args.pretrained)

    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()
        model.to_gpu()

    train = LSTMParserDataset(args.model, args.train)
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    val = LSTMParserDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.Adam(beta2=0.9)
    # optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
    optimizer.setup(model)
    optimizer.add_hook(WeightDecay(2e-6))
    # optimizer.add_hook(GradientClipping(5.))
    updater = training.StandardUpdater(train_iter, optimizer,
            device=args.gpu, converter=converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 1000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.ExponentialShift(
                    "eps", .75, 2e-3), trigger=(2500, 'iteration'))
    trainer.extend(extensions.Evaluator(
        val_iter, eval_model, converter, device=args.gpu), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration',
        'main/tagging_accuracy', 'main/tagging_loss',
        'main/parsing_accuracy', 'main/parsing_loss',
        'validation/main/tagging_accuracy',
        'validation/main/parsing_accuracy'
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
ja_lstm_parser.py 文件源码 项目:depccg 作者: masashi-y 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, model_path, word_dim=None, char_dim=None, nlayers=2,
            hidden_dim=128, relu_dim=64, dep_dim=100, dropout_ratio=0.5):
        self.model_path = model_path
        defs_file = model_path + "/tagger_defs.txt"
        if word_dim is None:
            # use as supertagger
            with open(defs_file) as f:
                defs = json.load(f)
            self.dep_dim    = defs["dep_dim"]
            self.word_dim   = defs["word_dim"]
            self.char_dim   = defs["char_dim"]
            self.hidden_dim = defs["hidden_dim"]
            self.relu_dim   = defs["relu_dim"]
            self.nlayers    = defs["nlayers"]
            self.train = False
            self.extractor = FeatureExtractor(model_path)
        else:
            # training
            self.dep_dim = dep_dim
            self.word_dim = word_dim
            self.char_dim = char_dim
            self.hidden_dim = hidden_dim
            self.relu_dim = relu_dim
            self.nlayers = nlayers
            self.train = True
            with open(defs_file, "w") as f:
                json.dump({"model": self.__class__.__name__,
                           "word_dim": self.word_dim, "char_dim": self.char_dim,
                           "hidden_dim": hidden_dim, "relu_dim": relu_dim,
                           "nlayers": nlayers, "dep_dim": dep_dim}, f)

        self.targets = read_model_defs(model_path + "/target.txt")
        self.words = read_model_defs(model_path + "/words.txt")
        self.chars = read_model_defs(model_path + "/chars.txt")
        self.in_dim = self.word_dim + self.char_dim
        self.dropout_ratio = dropout_ratio
        super(JaLSTMParser, self).__init__(
                emb_word=L.EmbedID(len(self.words), self.word_dim),
                emb_char=L.EmbedID(len(self.chars), 50, ignore_label=IGNORE),
                conv_char=L.Convolution2D(1, self.char_dim,
                    (3, 50), stride=1, pad=(1, 0)),
                lstm_f=L.NStepLSTM(nlayers, self.in_dim,
                    self.hidden_dim, self.dropout_ratio),
                lstm_b=L.NStepLSTM(nlayers, self.in_dim,
                    self.hidden_dim, self.dropout_ratio),
                linear_cat1=L.Linear(2 * self.hidden_dim, self.relu_dim),
                linear_cat2=L.Linear(self.relu_dim, len(self.targets)),
                linear_dep=L.Linear(2 * self.hidden_dim, self.dep_dim),
                linear_head=L.Linear(2 * self.hidden_dim, self.dep_dim),
                biaffine=Biaffine(self.dep_dim)
                )
ja_lstm_tagger.py 文件源码 项目:depccg 作者: masashi-y 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, model_path, word_dim=None, char_dim=None,
            nlayers=2, hidden_dim=128, relu_dim=64, dropout_ratio=0.5):
        self.model_path = model_path
        defs_file = model_path + "/tagger_defs.txt"
        if word_dim is None:
            # use as supertagger
            with open(defs_file) as f:
                defs = json.load(f)
            self.word_dim   = defs["word_dim"]
            self.char_dim   = defs["char_dim"]
            self.hidden_dim = defs["hidden_dim"]
            self.relu_dim   = defs["relu_dim"]
            self.nlayers    = defs["nlayers"]
            self.train = False
            self.extractor = FeatureExtractor(model_path)
        else:
            # training
            self.word_dim = word_dim
            self.char_dim = char_dim
            self.hidden_dim = hidden_dim
            self.relu_dim = relu_dim
            self.nlayers = nlayers
            self.train = True
            with open(defs_file, "w") as f:
                json.dump({"model": self.__class__.__name__,
                           "word_dim": self.word_dim, "char_dim": self.char_dim,
                           "hidden_dim": hidden_dim, "relu_dim": relu_dim,
                           "nlayers": nlayers}, f)

        self.targets = read_model_defs(model_path + "/target.txt")
        self.words = read_model_defs(model_path + "/words.txt")
        self.chars = read_model_defs(model_path + "/chars.txt")
        self.in_dim = self.word_dim + self.char_dim
        self.dropout_ratio = dropout_ratio
        super(JaLSTMTagger, self).__init__(
                emb_word=L.EmbedID(len(self.words), self.word_dim),
                emb_char=L.EmbedID(len(self.chars), 50, ignore_label=IGNORE),
                conv_char=L.Convolution2D(1, self.char_dim,
                    (3, 50), stride=1, pad=(1, 0)),
                lstm_f=L.NStepLSTM(nlayers, self.in_dim,
                    self.hidden_dim, 0.),
                lstm_b=L.NStepLSTM(nlayers, self.in_dim,
                    self.hidden_dim, 0.),
                conv1=L.Convolution2D(1, 2 * self.hidden_dim,
                    (7, 2 * self.hidden_dim), stride=1, pad=(3, 0)),
                linear1=L.Linear(2 * self.hidden_dim, self.relu_dim),
                linear2=L.Linear(self.relu_dim, len(self.targets)),
                )
ja_lstm_tagger.py 文件源码 项目:depccg 作者: masashi-y 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def train(args):
    model = LSTMTagger(args.model, args.word_emb_size, args.char_emb_size,
            args.nlayers, args.hidden_dim, args.relu_dim, args.dropout_ratio)
    with open(args.model + "/params", "w") as f:
            log(args, f)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print('Load pretrained word embeddings from', args.pretrained)
        model.load_pretrained_embeddings(args.pretrained)

    train = LSTMTaggerDataset(args.model, args.train)
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    val = LSTMTaggerDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
    optimizer.setup(model)
    optimizer.add_hook(WeightDecay(1e-6))
    # optimizer.add_hook(GradientClipping(5.))
    updater = training.StandardUpdater(train_iter, optimizer, converter=converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 1000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.Evaluator(
        val_iter, eval_model, converter), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/loss', 'validation/main/loss',
        'main/accuracy', 'validation/main/accuracy',
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
ja_lstm_parser_ph.py 文件源码 项目:depccg 作者: masashi-y 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def train(args):
    model = PeepHoleJaLSTMParser(args.model, args.word_emb_size, args.char_emb_size,
            args.nlayers, args.hidden_dim, args.relu_dim, args.dep_dim, args.dropout_ratio)

    with open(args.model + "/params", "w") as f: log(args, f)

    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print('Load pretrained word embeddings from', args.pretrained)
        model.load_pretrained_embeddings(args.pretrained)

    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()
        model.to_gpu()


    converter = lambda x, device: \
            concat_examples(x, device=device, padding=-1)

    train = LSTMParserDataset(args.model, args.train)
    train_iter = SerialIterator(train, args.batchsize)
    val = LSTMParserDataset(args.model, args.val)
    val_iter = SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.Adam(beta2=0.9)
    # optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
    optimizer.setup(model)
    optimizer.add_hook(WeightDecay(1e-6))
    # optimizer.add_hook(GradientClipping(5.))
    updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu, converter=converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 2000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.Evaluator(val_iter, eval_model,
                    converter, device=args.gpu), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/tagging_loss',
        'main/tagging_accuracy', 'main/tagging_loss',
        'main/parsing_accuracy', 'main/parsing_loss',
        'validation/main/tagging_accuracy',
        'validation/main/parsing_accuracy'
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
lstm_parser.py 文件源码 项目:depccg 作者: masashi-y 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def train(args):
    model = LSTMParser(args.model, args.word_emb_size, args.afix_emb_size, args.nlayers,
            args.hidden_dim, args.elu_dim, args.dep_dim, args.dropout_ratio)
    with open(args.model + "/params", "w") as f: log(args, f)

    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print('Load pretrained word embeddings from', args.pretrained)
        model.load_pretrained_embeddings(args.pretrained)

    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()
        model.to_gpu()

    train = LSTMParserDataset(args.model, args.train)
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    val = LSTMParserDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.Adam(beta2=0.9)
    # optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
    optimizer.setup(model)
    optimizer.add_hook(WeightDecay(1e-6))
    # optimizer.add_hook(GradientClipping(5.))
    updater = training.StandardUpdater(train_iter, optimizer,
            device=args.gpu, converter=converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 1000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.Evaluator(val_iter, eval_model,
                    converter, device=args.gpu), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration',
        'main/tagging_accuracy', 'main/tagging_loss',
        'main/parsing_accuracy', 'main/parsing_loss',
        'validation/main/tagging_accuracy',
        'validation/main/parsing_accuracy'
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
tagger.py 文件源码 项目:depccg 作者: masashi-y 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def compress_traindata(args):
    words = OrderedDict()
    print("reading embedding vocabulary")
    for word in open(args.vocab):
        words[word.strip()] = 1
    suffixes = defaultdict(int)
    suffixes["UNK"] = 1
    caps = defaultdict(int)
    target = defaultdict(int)
    traindata = open(args.path)
    len_traindata = 0
    print("reading training file")
    for line in traindata:
        len_traindata += 1
        items = line.strip().split(" ")
        target[items[-1]] += 1
        for item in items[:-1]:
            word, suffix, cap = item.split("|")
            if words.has_key(word):
                words[word] += 1
            else:
                words[word] = 1
            suffixes[suffix] += 1
            caps[cap] += 1
    def out_dict(d, outfile, freq_cut=-1):
        print("writing to {}".format(outfile))
        res = {}
        with open(outfile, "w") as out:
            i = 0
            for item, n in d.items():
                if freq_cut <= n:
                    out.write("{} {}\n".format(item, n))
                    res[item] = i
                    i += 1
        return res
    word2id = out_dict(words, os.path.join(args.out, "words.txt"))
    suffix2id = out_dict(suffixes, os.path.join(args.out, "suffixes.txt"))
    cap2id = out_dict(caps, os.path.join(args.out, "caps.txt"))
    target2id = out_dict(target, os.path.join(args.out, "target.txt"), freq_cut=10)
    traindata.seek(0)
    new_traindata = os.path.join(args.out, "traindata.txt")
    print("writing to {}".format(new_traindata))
    with open(new_traindata, "w") as out:
        for i, line in enumerate(traindata):
            items = line.strip().split(" ")
            if not target2id.has_key(items[-1]):
                continue
            target =items[-1]
            new_line = ""
            for j, item in enumerate(items[:-1]):
                word, suffix, cap = item.split("|")
                if not word2id.has_key(word):
                    word = "*UNKNOWN*"
                if not suffix2id.has_key(suffix):
                    suffix = "UNK"
                new_line += "|".join([word, suffix, cap]) + " "
            out.write(new_line + target + "\n")
japanese_tagger.py 文件源码 项目:depccg 作者: masashi-y 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def train(args):
    model = JaCCGEmbeddingTagger(args.model,
                args.word_emb_size, args.char_emb_size)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print('Load pretrained word embeddings from', args.pretrained)
        model.load_pretrained_embeddings(args.pretrained)

    train = JaCCGTaggerDataset(args.model, args.train)
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    val = JaCCGTaggerDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.AdaGrad()
    optimizer.setup(model)
    # optimizer.add_hook(WeightDecay(1e-8))
    my_converter = lambda x, dev: convert.concat_examples(x, dev, (None,-1,None,None))
    updater = training.StandardUpdater(train_iter, optimizer, converter=my_converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 1000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.Evaluator(
        val_iter, eval_model, my_converter), trigger=val_interval)
    trainer.extend(extensions.dump_graph('main/loss'))
    trainer.extend(extensions.snapshot(), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/loss', 'validation/main/loss',
        'main/accuracy', 'validation/main/accuracy',
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
lstm_tagger_ph.py 文件源码 项目:depccg 作者: masashi-y 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def train(args):
    model = PeepHoleLSTMTagger(args.model, args.word_emb_size, args.afix_emb_size,
            args.nlayers, args.hidden_dim, args.relu_dim, args.dropout_ratio)
    with open(args.model + "/params", "w") as f:
            log(args, f)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print('Load pretrained word embeddings from', args.pretrained)
        model.load_pretrained_embeddings(args.pretrained)

    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()
        model.to_gpu()

    converter = lambda x, device: \
            concat_examples(x, device=device, padding=-1)

    train = LSTMTaggerDataset(args.model, args.train)
    train_iter = SerialIterator(train, args.batchsize)
    val = LSTMTaggerDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
    optimizer.setup(model)
    optimizer.add_hook(WeightDecay(1e-6))
    optimizer.add_hook(GradientClipping(5.))
    updater = training.StandardUpdater(train_iter, optimizer,
            device=args.gpu, converter=converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 1000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.Evaluator(
        val_iter, eval_model, converter, device=args.gpu), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/loss', 'validation/main/loss',
        'main/accuracy', 'validation/main/accuracy',
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
lstm_parser_ph.py 文件源码 项目:depccg 作者: masashi-y 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def train(args):
    model = PeepHoleLSTMParser(args.model, args.word_emb_size, args.afix_emb_size, args.nlayers,
            args.hidden_dim, args.elu_dim, args.dep_dim, args.dropout_ratio, args.gpu >= 0)
    with open(args.model + "/params", "w") as f: log(args, f)

    if args.initmodel:
        print 'Load model from', args.initmodel
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print 'Load pretrained word embeddings from', args.pretrained
        model.load_pretrained_embeddings(args.pretrained)

    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()
        model.to_gpu()

    converter = lambda x, device: \
            concat_examples(x, device=device, padding=-1)

    train = LSTMParserDataset(args.model, args.train)
    train_iter = SerialIterator(train, args.batchsize)
    val = LSTMParserDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.Adam(beta2=0.9)
    # optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
    optimizer.setup(model)
    optimizer.add_hook(WeightDecay(1e-6))
    # optimizer.add_hook(GradientClipping(5.))
    updater = training.StandardUpdater(train_iter, optimizer,
            device=args.gpu, converter=converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 1000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.Evaluator(val_iter, eval_model,
                    converter, device=args.gpu), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/tagging_loss',
        'main/tagging_accuracy', 'main/tagging_loss',
        'main/parsing_accuracy', 'main/parsing_loss',
        'validation/main/tagging_loss', 'validation/main/tagging_accuracy',
        'validation/main/parsing_loss', 'validation/main/parsing_accuracy'
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
train_pose_net.py 文件源码 项目:DeepPoseComparison 作者: ynaka81 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def start(self):
        """ Train pose net. """
        # set random seed.
        if self.seed is not None:
            random.seed(self.seed)
            np.random.seed(self.seed)
            if self.gpu >= 0:
                chainer.cuda.cupy.random.seed(self.seed)
        # initialize model to train.
        model = AlexNet(self.Nj, self.use_visibility)
        if self.resume_model:
            serializers.load_npz(self.resume_model, model)
        # prepare gpu.
        if self.gpu >= 0:
            chainer.cuda.get_device(self.gpu).use()
            model.to_gpu()
        # load the datasets.
        train = PoseDataset(self.train, data_augmentation=self.data_augmentation)
        val = PoseDataset(self.val, data_augmentation=False)
        # training/validation iterators.
        train_iter = chainer.iterators.MultiprocessIterator(
            train, self.batchsize)
        val_iter = chainer.iterators.MultiprocessIterator(
            val, self.batchsize, repeat=False, shuffle=False)
        # set up an optimizer.
        optimizer = self._get_optimizer()
        optimizer.setup(model)
        if self.resume_opt:
            chainer.serializers.load_npz(self.resume_opt, optimizer)
        # set up a trainer.
        updater = training.StandardUpdater(train_iter, optimizer, device=self.gpu)
        trainer = training.Trainer(
            updater, (self.epoch, 'epoch'), os.path.join(self.out, 'chainer'))
        # standard trainer settings
        trainer.extend(extensions.dump_graph('main/loss'))
        val_interval = (10, 'epoch')
        trainer.extend(TestModeEvaluator(val_iter, model, device=self.gpu), trigger=val_interval)
        # save parameters and optimization state per validation step
        resume_interval = (self.epoch/10, 'epoch')
        trainer.extend(extensions.snapshot_object(
            model, "epoch-{.updater.epoch}.model"), trigger=resume_interval)
        trainer.extend(extensions.snapshot_object(
            optimizer, "epoch-{.updater.epoch}.state"), trigger=resume_interval)
        trainer.extend(extensions.snapshot(
            filename="epoch-{.updater.epoch}.iter"), trigger=resume_interval)
        # show log
        log_interval = (10, "iteration")
        trainer.extend(extensions.LogReport(trigger=log_interval))
        trainer.extend(extensions.observe_lr(), trigger=log_interval)
        trainer.extend(extensions.PrintReport(
            ['epoch', 'main/loss', 'validation/main/loss', 'lr']), trigger=log_interval)
        trainer.extend(extensions.ProgressBar(update_interval=10))
        # start training
        if self.resume:
            chainer.serializers.load_npz(self.resume, trainer)
        trainer.run()
train_word2vec.py 文件源码 项目:vsmlib 作者: undertherain 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def train(args):
    time_start = timer()
    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        cuda.check_cuda_available()


    if args.path_vocab == '':
        vocab = create_from_dir(args.path_corpus)
    else:
        vocab = Vocabulary()
        vocab.load(args.path_vocab)
        logger.info("loaded vocabulary")

    if args.context_representation != 'word': # for deps or ner context representation, we need a new context vocab for NS or HSM loss function.
        vocab_context = create_from_annotated_dir(args.path_corpus, representation=args.context_representation)
    else :
        vocab_context = vocab

    loss_func = get_loss_func(args, vocab_context)
    model = get_model(args, loss_func, vocab)

    if args.gpu >= 0:
        model.to_gpu()
        logger.debug("model sent to gpu")

    optimizer = chainer.optimizers.Adam()
    optimizer.setup(model)

    if os.path.isfile(args.path_corpus):
        train, val = get_data(args.path_corpus, vocab)
        if args.test:
            train = train[:100]
            val = val[:100]
        train_iter = WindowIterator(train, args.window, args.batchsize)
        val_iter = WindowIterator(val, args.window, args.batchsize, repeat=False)
    else:
        train_iter = DirWindowIterator(path=args.path_corpus, vocab=vocab, window_size=args.window, batch_size=args.batchsize)
    updater = training.StandardUpdater(train_iter, optimizer, converter=convert, device=args.gpu)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.path_out)

    if os.path.isfile(args.path_corpus):
        trainer.extend(extensions.Evaluator(val_iter, model, converter=convert, device=args.gpu))
    trainer.extend(extensions.LogReport())
    if os.path.isfile(args.path_corpus):
        trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'validation/main/loss', 'elapsed_time']))
    else:
        trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'elapsed_time']))
    # trainer.extend(extensions.ProgressBar())
    trainer.run()
    model = create_model(args, model, vocab)
    time_end = timer()
    model.metadata["execution_time"] = time_end - time_start
    return model
main.py 文件源码 项目:vsmlib 作者: undertherain 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def main(options):

    #load the config params
    gpu = options['gpu']
    data_path = options['path_dataset']
    embeddings_path = options['path_vectors']
    n_epoch = options['epochs']
    batch_size = options['batchsize']
    test = options['test']
    embed_dim = options['embed_dim']
    freeze = options['freeze_embeddings']
    distance_embed_dim = options['distance_embed_dim']

    #load the data
    data_processor = DataProcessor(data_path)
    data_processor.prepare_dataset()
    train_data = data_processor.train_data
    test_data = data_processor.test_data

    vocab = data_processor.vocab
    cnn = CNN(n_vocab=len(vocab), input_channel=1,
                    output_channel=100, 
                    n_label=19, 
                    embed_dim=embed_dim, position_dims=distance_embed_dim, freeze=freeze)
    cnn.load_embeddings(embeddings_path, data_processor.vocab)
    model = L.Classifier(cnn)

    #use GPU if flag is set
    if gpu >= 0:
        model.to_gpu()

    #setup the optimizer
    optimizer = O.Adam()
    optimizer.setup(model)

    train_iter = chainer.iterators.SerialIterator(train_data, batch_size)
    test_iter = chainer.iterators.SerialIterator(test_data, batch_size,repeat=False, shuffle=False) 

    updater = training.StandardUpdater(train_iter, optimizer, converter=convert.concat_examples, device=gpu)
    trainer = training.Trainer(updater, (n_epoch, 'epoch'))

    # Evaluation
    test_model = model.copy()
    test_model.predictor.train = False
    trainer.extend(extensions.Evaluator(test_iter, test_model, device=gpu, converter=convert.concat_examples))


    trainer.extend(extensions.LogReport())
    trainer.extend(extensions.PrintReport(
        ['epoch', 'main/loss', 'validation/main/loss',
            'main/accuracy', 'validation/main/accuracy']))
    trainer.extend(extensions.ProgressBar(update_interval=10))


    trainer.run()
train_cnn.py 文件源码 项目:vsmlib 作者: undertherain 项目源码 文件源码 阅读 70 收藏 0 点赞 0 评论 0
def main(options):

    #load the config params
    gpu = options['gpu']
    data_path = options['path_dataset']
    embeddings_path = options['path_vectors']
    n_epoch = options['epochs']
    batchsize = options['batchsize']
    test = options['test']
    embed_dim = options['embed_dim']
    freeze = options['freeze_embeddings']

    #load the data
    data_processor = DataProcessor(data_path, test)
    data_processor.prepare_dataset()
    train_data = data_processor.train_data
    dev_data = data_processor.dev_data
    test_data = data_processor.test_data

    vocab = data_processor.vocab
    cnn = CNN(n_vocab=len(vocab), input_channel=1,
                  output_channel=10, n_label=2, embed_dim=embed_dim, freeze=freeze)
    cnn.load_embeddings(embeddings_path, data_processor.vocab)
    model = L.Classifier(cnn)
    if gpu >= 0:
        model.to_gpu()

    #setup the optimizer
    optimizer = O.Adam()
    optimizer.setup(model)


    train_iter = chainer.iterators.SerialIterator(train_data, batchsize)
    dev_iter = chainer.iterators.SerialIterator(dev_data, batchsize,repeat=False, shuffle=False)
    test_iter = chainer.iterators.SerialIterator(test_data, batchsize,repeat=False, shuffle=False) 
    batch1 = train_iter.next()
    batch2 = dev_iter.next()
    updater = training.StandardUpdater(train_iter, optimizer, converter=util.concat_examples, device=gpu)
    trainer = training.Trainer(updater, (n_epoch, 'epoch'))

    # Evaluation
    eval_model = model.copy()
    eval_model.predictor.train = False
    trainer.extend(extensions.Evaluator(dev_iter, eval_model, device=gpu, converter=util.concat_examples))

    test_model = model.copy()
    test_model.predictor.train = False

    trainer.extend(extensions.LogReport())
    trainer.extend(extensions.PrintReport(
        ['epoch', 'main/loss', 'validation/main/loss',
         'main/accuracy', 'validation/main/accuracy']))
    trainer.extend(extensions.ProgressBar(update_interval=10))


    trainer.run()


问题


面经


文章

微信
公众号

扫码关注公众号