def train(network, loss, X_tr, Y_tr, X_te, Y_te, n_epochs=30, gamma=1):
model= Objective(network, loss=loss, gamma=gamma)
#optimizer = optimizers.SGD()
optimizer = optimizers.Adam()
optimizer.setup(model)
train = tuple_dataset.TupleDataset(X_tr, Y_tr)
test = tuple_dataset.TupleDataset(X_te, Y_te)
train_iter = iterators.SerialIterator(train, batch_size=1, shuffle=True)
test_iter = iterators.SerialIterator(test, batch_size=1, repeat=False,
shuffle=False)
updater = training.StandardUpdater(train_iter, optimizer)
trainer = training.Trainer(updater, (n_epochs, 'epoch'))
trainer.run()
python类Trainer()的实例源码
def main():
model = L.Classifier(CNN())
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
train, test = chainer.datasets.get_mnist(ndim=3)
train_iter = chainer.iterators.SerialIterator(train, batch_size=100)
test_iter = chainer.iterators.SerialIterator(test, batch_size=100, repeat=False, shuffle=False)
updater = training.StandardUpdater(train_iter, optimizer)
trainer = training.Trainer(updater, (5, 'epoch'), out='result')
trainer.extend(extensions.Evaluator(test_iter, model))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy','validation/main/accuracy']))
trainer.extend(extensions.ProgressBar())
trainer.run()
def set_trainer(self, out_dir, gpu, n_epoch, g_clip, opt_name, lr=None):
if opt_name == "Adam":
opt = getattr(optimizers, opt_name)()
else:
opt = getattr(optimizers, opt_name)(lr)
opt.setup(self.model)
opt.add_hook(optimizer.GradientClipping(g_clip))
updater = training.StandardUpdater(self.train_iter, opt, device=gpu)
self.trainer = training.Trainer(updater, (n_epoch, 'epoch'), out=out_dir)
self.trainer.extend(extensions.Evaluator(self.test_iter, self.model, device=gpu))
self.trainer.extend(extensions.dump_graph('main/loss'))
self.trainer.extend(extensions.snapshot(), trigger=(n_epoch, 'epoch'))
self.trainer.extend(extensions.LogReport())
self.trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss'],
'epoch', file_name='loss.png'))
self.trainer.extend(extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'],
'epoch', file_name='accuracy.png'))
self.trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy',
'elapsed_time']))
self.trainer.extend(extensions.ProgressBar())
def test_linear_network():
# To ensure repeatability of experiments
np.random.seed(1042)
# Load data set
dataset = get_dataset(True)
iterator = LtrIterator(dataset, repeat=True, shuffle=True)
eval_iterator = LtrIterator(dataset, repeat=False, shuffle=False)
# Create neural network with chainer and apply our loss function
predictor = links.Linear(None, 1)
loss = Ranker(predictor, listnet)
# Build optimizer, updater and trainer
optimizer = optimizers.Adam(alpha=0.2)
optimizer.setup(loss)
updater = training.StandardUpdater(iterator, optimizer)
trainer = training.Trainer(updater, (10, 'epoch'))
# Evaluate loss before training
before_loss = eval(loss, eval_iterator)
# Train neural network
trainer.run()
# Evaluate loss after training
after_loss = eval(loss, eval_iterator)
# Assert precomputed values
assert_almost_equal(before_loss, 0.26958397)
assert_almost_equal(after_loss, 0.2326711)
def main(gpu_id=-1, bs=32, epoch=20, out='./result', resume=''):
net = ShallowConv()
model = L.Classifier(net)
if gpu_id >= 0:
chainer.cuda.get_device_from_id(gpu_id)
model.to_gpu()
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
train, test = chainer.datasets.get_mnist(ndim=3)
train_iter = chainer.iterators.SerialIterator(train, bs)
test_iter = chainer.iterators.SerialIterator(
test, bs, repeat=False, shuffle=False)
updater = training.StandardUpdater(train_iter, optimizer, device=gpu_id)
trainer = training.Trainer(updater, (epoch, 'epoch'), out=out)
trainer.extend(extensions.ParameterStatistics(model.predictor))
trainer.extend(extensions.Evaluator(test_iter, model, device=gpu_id))
trainer.extend(extensions.LogReport(log_name='parameter_statistics'))
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
trainer.extend(extensions.ProgressBar())
if resume:
chainer.serializers.load_npz(resume, trainer)
trainer.run()
not_layer_instance_norm_sample.py 文件源码
项目:instance_normalization_chainer
作者: crcrpar
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def main(gpu_id=-1, bs=32, epoch=20, out='./not_layer_result', resume=''):
net = ShallowConv()
model = L.Classifier(net)
if gpu_id >= 0:
chainer.cuda.get_device_from_id(gpu_id)
model.to_gpu()
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
train, test = chainer.datasets.get_mnist(ndim=3)
train_iter = chainer.iterators.SerialIterator(train, bs)
test_iter = chainer.iterators.SerialIterator(test, bs, repeat=False,
shuffle=False)
updater = training.StandardUpdater(train_iter, optimizer, device=gpu_id)
trainer = training.Trainer(updater, (epoch, 'epoch'), out=out)
trainer.extend(extensions.ParameterStatistics(model.predictor))
trainer.extend(extensions.Evaluator(test_iter, model, device=gpu_id))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
trainer.extend(extensions.ProgressBar())
if resume:
chainer.serializers.load_npz(resume, trainer)
trainer.run()
def get_trainer(updater, evaluator, epochs):
trainer = training.Trainer(updater, (epochs, 'epoch'), out='result')
trainer.extend(evaluator)
# TODO: reduce LR -- how to update every X epochs?
# trainer.extend(extensions.ExponentialShift('lr', 0.1, target=lr*0.0001))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.ProgressBar(
(epochs, 'epoch'), update_interval=10))
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss']))
return trainer
def train(args):
model = EmbeddingTagger(args.model, 50, 20, 30)
model.setup_training(args.embed)
if args.initmodel:
print('Load model from', args.initmodel)
chainer.serializers.load_npz(args.initmodel, model)
train = CCGBankDataset(args.model, args.train)
train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
val = CCGBankDataset(args.model, args.val)
val_iter = chainer.iterators.SerialIterator(
val, args.batchsize, repeat=False, shuffle=False)
optimizer = chainer.optimizers.SGD(lr=0.01)
optimizer.setup(model)
updater = training.StandardUpdater(train_iter, optimizer)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)
val_interval = 5000, 'iteration'
log_interval = 200, 'iteration'
val_model = model.copy()
trainer.extend(extensions.Evaluator(val_iter, val_model), trigger=val_interval)
trainer.extend(extensions.dump_graph('main/loss'))
trainer.extend(extensions.snapshot(), trigger=val_interval)
trainer.extend(extensions.snapshot_object(
model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.PrintReport([
'epoch', 'iteration', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy',
]), trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
def train(args):
nz = args.nz
batch_size = args.batch_size
epochs = args.epochs
gpu = args.gpu
# CIFAR-10 images in range [-1, 1] (tanh generator outputs)
train, _ = datasets.get_cifar10(withlabel=False, ndim=3, scale=2)
train -= 1.0
train_iter = iterators.SerialIterator(train, batch_size)
z_iter = RandomNoiseIterator(GaussianNoiseGenerator(0, 1, args.nz),
batch_size)
optimizer_generator = optimizers.RMSprop(lr=0.00005)
optimizer_critic = optimizers.RMSprop(lr=0.00005)
optimizer_generator.setup(Generator())
optimizer_critic.setup(Critic())
updater = WassersteinGANUpdater(
iterator=train_iter,
noise_iterator=z_iter,
optimizer_generator=optimizer_generator,
optimizer_critic=optimizer_critic,
device=gpu)
trainer = training.Trainer(updater, stop_trigger=(epochs, 'epoch'))
trainer.extend(extensions.ProgressBar())
trainer.extend(extensions.LogReport(trigger=(1, 'iteration')))
trainer.extend(GeneratorSample(), trigger=(1, 'epoch'))
trainer.extend(extensions.PrintReport(['epoch', 'iteration', 'critic/loss',
'critic/loss/real', 'critic/loss/fake', 'generator/loss']))
trainer.run()
def main():
unit = 1000
batchsize = 100
epoch = 20
model = L.Classifier(MLP(unit, 10))
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
train, test = chainer.datasets.get_mnist()
train_iter = chainer.iterators.SerialIterator(train, batchsize)
test_iter = chainer.iterators.SerialIterator(test, batchsize, repeat=False, shuffle=False)
updater = training.StandardUpdater(train_iter, optimizer)
trainer = training.Trainer(updater, (epoch, 'epoch'), out='result')
trainer.extend(extensions.Evaluator(test_iter, model))
trainer.extend(extensions.dump_graph('main/loss'))
trainer.extend(extensions.snapshot(), trigger=(epoch, 'epoch'))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
trainer.extend(extensions.ProgressBar())
trainer.run()
def fit(model, train, valid, device=-1, batchsize=4096, n_epoch=500,
resume=None, alpha=1e-3):
if device >= 0:
chainer.cuda.get_device(device).use()
model.to_gpu(device)
optimizer = chainer.optimizers.Adam(alpha)
optimizer.setup(model)
# Setup iterators
train_iter = chainer.iterators.SerialIterator(train, batchsize)
valid_iter = chainer.iterators.SerialIterator(valid, batchsize,
repeat=False, shuffle=False)
updater = training.StandardUpdater(train_iter, optimizer, device=device)
trainer = training.Trainer(updater, (n_epoch, 'epoch'),
out='out_' + str(device))
# Setup logging, printing & saving
keys = ['loss', 'rmse', 'bias', 'kld0', 'kld1']
keys += ['kldg', 'kldi', 'hypg', 'hypi']
keys += ['hypglv', 'hypilv']
reports = ['epoch']
reports += ['main/' + key for key in keys]
reports += ['validation/main/rmse']
trainer.extend(TestModeEvaluator(valid_iter, model, device=device))
trainer.extend(extensions.Evaluator(valid_iter, model, device=device))
trainer.extend(extensions.dump_graph('main/loss'))
trainer.extend(extensions.snapshot(), trigger=(10, 'epoch'))
trainer.extend(extensions.LogReport(trigger=(1, 'epoch')))
trainer.extend(extensions.PrintReport(reports))
trainer.extend(extensions.ProgressBar(update_interval=10))
# If previous model detected, resume
if resume:
print("Loading from {}".format(resume))
chainer.serializers.load_npz(resume, trainer)
# Run the model
trainer.run()
def train(args):
model = LSTMParser(args.model, args.word_emb_size, args.afix_emb_size, args.nlayers,
args.hidden_dim, args.elu_dim, args.dep_dim, args.dropout_ratio)
with open(args.model + "/params", "w") as f: log(args, f)
if args.initmodel:
print 'Load model from', args.initmodel
chainer.serializers.load_npz(args.initmodel, model)
if args.pretrained:
print 'Load pretrained word embeddings from', args.pretrained
model.load_pretrained_embeddings(args.pretrained)
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use()
model.to_gpu()
train = LSTMParserDataset(args.model, args.train)
train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
val = LSTMParserDataset(args.model, args.val)
val_iter = chainer.iterators.SerialIterator(
val, args.batchsize, repeat=False, shuffle=False)
optimizer = chainer.optimizers.Adam(beta2=0.9)
# optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
optimizer.setup(model)
optimizer.add_hook(WeightDecay(1e-6))
# optimizer.add_hook(GradientClipping(5.))
updater = training.StandardUpdater(train_iter, optimizer,
device=args.gpu, converter=converter)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)
val_interval = 1000, 'iteration'
log_interval = 200, 'iteration'
eval_model = model.copy()
eval_model.train = False
trainer.extend(extensions.Evaluator(val_iter, eval_model,
converter, device=args.gpu), trigger=val_interval)
trainer.extend(extensions.snapshot_object(
model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.PrintReport([
'epoch', 'iteration',
'main/tagging_accuracy', 'main/tagging_loss',
'main/parsing_accuracy', 'main/parsing_loss',
'validation/main/tagging_accuracy',
'validation/main/parsing_accuracy'
]), trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
def train(args):
model = LSTMTagger(args.model, args.word_emb_size, args.afix_emb_size,
args.nlayers, args.hidden_dim, args.relu_dim, args.dropout_ratio)
with open(args.model + "/params", "w") as f:
log(args, f)
if args.initmodel:
print('Load model from', args.initmodel)
chainer.serializers.load_npz(args.initmodel, model)
if args.pretrained:
print('Load pretrained word embeddings from', args.pretrained)
model.load_pretrained_embeddings(args.pretrained)
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use()
model.to_gpu()
train = LSTMTaggerDataset(args.model, args.train)
train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
val = LSTMTaggerDataset(args.model, args.val)
val_iter = chainer.iterators.SerialIterator(
val, args.batchsize, repeat=False, shuffle=False)
optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
optimizer.setup(model)
optimizer.add_hook(WeightDecay(1e-6))
optimizer.add_hook(GradientClipping(5.))
updater = training.StandardUpdater(train_iter, optimizer,
device=args.gpu, converter=converter)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)
val_interval = 2000, 'iteration'
log_interval = 200, 'iteration'
eval_model = model.copy()
eval_model.train = False
trainer.extend(extensions.Evaluator(
val_iter, eval_model, converter, device=args.gpu), trigger=val_interval)
trainer.extend(extensions.snapshot_object(
model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.PrintReport([
'epoch', 'iteration', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy',
]), trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
def train(args):
model = BiaffineJaLSTMParser(args.model, args.word_emb_size, args.char_emb_size,
args.nlayers, args.hidden_dim, args.dep_dim, args.dropout_ratio)
with open(args.model + "/params", "w") as f: log(args, f)
if args.initmodel:
print('Load model from', args.initmodel)
chainer.serializers.load_npz(args.initmodel, model)
if args.pretrained:
print('Load pretrained word embeddings from', args.pretrained)
model.load_pretrained_embeddings(args.pretrained)
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use()
model.to_gpu()
train = LSTMParserDataset(args.model, args.train)
train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
val = LSTMParserDataset(args.model, args.val)
val_iter = chainer.iterators.SerialIterator(
val, args.batchsize, repeat=False, shuffle=False)
optimizer = chainer.optimizers.Adam(beta2=0.9)
# optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
optimizer.setup(model)
optimizer.add_hook(WeightDecay(2e-6))
# optimizer.add_hook(GradientClipping(5.))
updater = training.StandardUpdater(train_iter, optimizer,
device=args.gpu, converter=converter)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)
val_interval = 1000, 'iteration'
log_interval = 200, 'iteration'
eval_model = model.copy()
eval_model.train = False
trainer.extend(extensions.ExponentialShift(
"eps", .75, 2e-3), trigger=(2500, 'iteration'))
trainer.extend(extensions.Evaluator(
val_iter, eval_model, converter, device=args.gpu), trigger=val_interval)
trainer.extend(extensions.snapshot_object(
model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.PrintReport([
'epoch', 'iteration',
'main/tagging_accuracy', 'main/tagging_loss',
'main/parsing_accuracy', 'main/parsing_loss',
'validation/main/tagging_accuracy',
'validation/main/parsing_accuracy'
]), trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
def train(args):
model = JaLSTMParser(args.model, args.word_emb_size, args.char_emb_size,
args.nlayers, args.hidden_dim, args.relu_dim, args.dep_dim, args.dropout_ratio)
with open(args.model + "/params", "w") as f: log(args, f)
if args.initmodel:
print('Load model from', args.initmodel)
chainer.serializers.load_npz(args.initmodel, model)
if args.pretrained:
print('Load pretrained word embeddings from', args.pretrained)
model.load_pretrained_embeddings(args.pretrained)
train = LSTMParserDataset(args.model, args.train)
train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
val = LSTMParserDataset(args.model, args.val)
val_iter = chainer.iterators.SerialIterator(
val, args.batchsize, repeat=False, shuffle=False)
optimizer = chainer.optimizers.Adam(beta2=0.9)
# optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
optimizer.setup(model)
optimizer.add_hook(WeightDecay(1e-6))
# optimizer.add_hook(GradientClipping(5.))
updater = training.StandardUpdater(train_iter, optimizer, converter=converter)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)
val_interval = 1000, 'iteration'
log_interval = 200, 'iteration'
eval_model = model.copy()
eval_model.train = False
trainer.extend(extensions.Evaluator(
val_iter, eval_model, converter), trigger=val_interval)
trainer.extend(extensions.snapshot_object(
model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.PrintReport([
'epoch', 'iteration', 'main/tagging_loss',
'main/tagging_accuracy', 'main/tagging_loss',
'main/parsing_accuracy', 'main/parsing_loss',
'validation/main/tagging_loss', 'validation/main/tagging_accuracy',
'validation/main/parsing_loss', 'validation/main/parsing_accuracy'
]), trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
def train(args):
model = LSTMTagger(args.model, args.word_emb_size, args.char_emb_size,
args.nlayers, args.hidden_dim, args.relu_dim, args.dropout_ratio)
with open(args.model + "/params", "w") as f:
log(args, f)
if args.initmodel:
print('Load model from', args.initmodel)
chainer.serializers.load_npz(args.initmodel, model)
if args.pretrained:
print('Load pretrained word embeddings from', args.pretrained)
model.load_pretrained_embeddings(args.pretrained)
train = LSTMTaggerDataset(args.model, args.train)
train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
val = LSTMTaggerDataset(args.model, args.val)
val_iter = chainer.iterators.SerialIterator(
val, args.batchsize, repeat=False, shuffle=False)
optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
optimizer.setup(model)
optimizer.add_hook(WeightDecay(1e-6))
# optimizer.add_hook(GradientClipping(5.))
updater = training.StandardUpdater(train_iter, optimizer, converter=converter)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)
val_interval = 1000, 'iteration'
log_interval = 200, 'iteration'
eval_model = model.copy()
eval_model.train = False
trainer.extend(extensions.Evaluator(
val_iter, eval_model, converter), trigger=val_interval)
trainer.extend(extensions.snapshot_object(
model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.PrintReport([
'epoch', 'iteration', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy',
]), trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
def train(args):
model = LSTMTagger(args.model, args.word_emb_size, args.afix_emb_size,
args.nlayers, args.hidden_dim, args.relu_dim, args.dropout_ratio)
with open(args.model + "/params", "w") as f:
log(args, f)
if args.initmodel:
print 'Load model from', args.initmodel
chainer.serializers.load_npz(args.initmodel, model)
if args.pretrained:
print 'Load pretrained word embeddings from', args.pretrained
model.load_pretrained_embeddings(args.pretrained)
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use()
model.to_gpu()
train = LSTMTaggerDataset(args.model, args.train)
train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
val = LSTMTaggerDataset(args.model, args.val)
val_iter = chainer.iterators.SerialIterator(
val, args.batchsize, repeat=False, shuffle=False)
optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
optimizer.setup(model)
optimizer.add_hook(WeightDecay(1e-6))
optimizer.add_hook(GradientClipping(5.))
updater = training.StandardUpdater(train_iter, optimizer,
device=args.gpu, converter=converter)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)
val_interval = 2000, 'iteration'
log_interval = 200, 'iteration'
eval_model = model.copy()
eval_model.train = False
trainer.extend(extensions.Evaluator(
val_iter, eval_model, converter, device=args.gpu), trigger=val_interval)
trainer.extend(extensions.snapshot_object(
model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.PrintReport([
'epoch', 'iteration', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy',
]), trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
def train(args):
model = LSTMParser(args.model, args.word_emb_size, args.afix_emb_size, args.nlayers,
args.hidden_dim, args.elu_dim, args.dep_dim, args.dropout_ratio)
with open(args.model + "/params", "w") as f: log(args, f)
if args.initmodel:
print('Load model from', args.initmodel)
chainer.serializers.load_npz(args.initmodel, model)
if args.pretrained:
print('Load pretrained word embeddings from', args.pretrained)
model.load_pretrained_embeddings(args.pretrained)
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use()
model.to_gpu()
train = LSTMParserDataset(args.model, args.train)
train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
val = LSTMParserDataset(args.model, args.val)
val_iter = chainer.iterators.SerialIterator(
val, args.batchsize, repeat=False, shuffle=False)
optimizer = chainer.optimizers.Adam(beta2=0.9)
# optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
optimizer.setup(model)
optimizer.add_hook(WeightDecay(1e-6))
# optimizer.add_hook(GradientClipping(5.))
updater = training.StandardUpdater(train_iter, optimizer,
device=args.gpu, converter=converter)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)
val_interval = 1000, 'iteration'
log_interval = 200, 'iteration'
eval_model = model.copy()
eval_model.train = False
trainer.extend(extensions.Evaluator(val_iter, eval_model,
converter, device=args.gpu), trigger=val_interval)
trainer.extend(extensions.snapshot_object(
model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.PrintReport([
'epoch', 'iteration',
'main/tagging_accuracy', 'main/tagging_loss',
'main/parsing_accuracy', 'main/parsing_loss',
'validation/main/tagging_accuracy',
'validation/main/parsing_accuracy'
]), trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
def train(args):
model = JaCCGEmbeddingTagger(args.model,
args.word_emb_size, args.char_emb_size)
if args.initmodel:
print('Load model from', args.initmodel)
chainer.serializers.load_npz(args.initmodel, model)
if args.pretrained:
print('Load pretrained word embeddings from', args.pretrained)
model.load_pretrained_embeddings(args.pretrained)
train = JaCCGTaggerDataset(args.model, args.train)
train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
val = JaCCGTaggerDataset(args.model, args.val)
val_iter = chainer.iterators.SerialIterator(
val, args.batchsize, repeat=False, shuffle=False)
optimizer = chainer.optimizers.AdaGrad()
optimizer.setup(model)
# optimizer.add_hook(WeightDecay(1e-8))
my_converter = lambda x, dev: convert.concat_examples(x, dev, (None,-1,None,None))
updater = training.StandardUpdater(train_iter, optimizer, converter=my_converter)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)
val_interval = 1000, 'iteration'
log_interval = 200, 'iteration'
eval_model = model.copy()
eval_model.train = False
trainer.extend(extensions.Evaluator(
val_iter, eval_model, my_converter), trigger=val_interval)
trainer.extend(extensions.dump_graph('main/loss'))
trainer.extend(extensions.snapshot(), trigger=val_interval)
trainer.extend(extensions.snapshot_object(
model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.PrintReport([
'epoch', 'iteration', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy',
]), trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
def train(args):
model = PeepHoleLSTMTagger(args.model, args.word_emb_size, args.afix_emb_size,
args.nlayers, args.hidden_dim, args.relu_dim, args.dropout_ratio)
with open(args.model + "/params", "w") as f:
log(args, f)
if args.initmodel:
print('Load model from', args.initmodel)
chainer.serializers.load_npz(args.initmodel, model)
if args.pretrained:
print('Load pretrained word embeddings from', args.pretrained)
model.load_pretrained_embeddings(args.pretrained)
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use()
model.to_gpu()
converter = lambda x, device: \
concat_examples(x, device=device, padding=-1)
train = LSTMTaggerDataset(args.model, args.train)
train_iter = SerialIterator(train, args.batchsize)
val = LSTMTaggerDataset(args.model, args.val)
val_iter = chainer.iterators.SerialIterator(
val, args.batchsize, repeat=False, shuffle=False)
optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
optimizer.setup(model)
optimizer.add_hook(WeightDecay(1e-6))
optimizer.add_hook(GradientClipping(5.))
updater = training.StandardUpdater(train_iter, optimizer,
device=args.gpu, converter=converter)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)
val_interval = 1000, 'iteration'
log_interval = 200, 'iteration'
eval_model = model.copy()
eval_model.train = False
trainer.extend(extensions.Evaluator(
val_iter, eval_model, converter, device=args.gpu), trigger=val_interval)
trainer.extend(extensions.snapshot_object(
model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.PrintReport([
'epoch', 'iteration', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy',
]), trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
def start(self):
""" Train pose net. """
# set random seed.
if self.seed is not None:
random.seed(self.seed)
np.random.seed(self.seed)
if self.gpu >= 0:
chainer.cuda.cupy.random.seed(self.seed)
# initialize model to train.
model = AlexNet(self.Nj, self.use_visibility)
if self.resume_model:
serializers.load_npz(self.resume_model, model)
# prepare gpu.
if self.gpu >= 0:
chainer.cuda.get_device(self.gpu).use()
model.to_gpu()
# load the datasets.
train = PoseDataset(self.train, data_augmentation=self.data_augmentation)
val = PoseDataset(self.val, data_augmentation=False)
# training/validation iterators.
train_iter = chainer.iterators.MultiprocessIterator(
train, self.batchsize)
val_iter = chainer.iterators.MultiprocessIterator(
val, self.batchsize, repeat=False, shuffle=False)
# set up an optimizer.
optimizer = self._get_optimizer()
optimizer.setup(model)
if self.resume_opt:
chainer.serializers.load_npz(self.resume_opt, optimizer)
# set up a trainer.
updater = training.StandardUpdater(train_iter, optimizer, device=self.gpu)
trainer = training.Trainer(
updater, (self.epoch, 'epoch'), os.path.join(self.out, 'chainer'))
# standard trainer settings
trainer.extend(extensions.dump_graph('main/loss'))
val_interval = (10, 'epoch')
trainer.extend(TestModeEvaluator(val_iter, model, device=self.gpu), trigger=val_interval)
# save parameters and optimization state per validation step
resume_interval = (self.epoch/10, 'epoch')
trainer.extend(extensions.snapshot_object(
model, "epoch-{.updater.epoch}.model"), trigger=resume_interval)
trainer.extend(extensions.snapshot_object(
optimizer, "epoch-{.updater.epoch}.state"), trigger=resume_interval)
trainer.extend(extensions.snapshot(
filename="epoch-{.updater.epoch}.iter"), trigger=resume_interval)
# show log
log_interval = (10, "iteration")
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.observe_lr(), trigger=log_interval)
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss', 'lr']), trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
# start training
if self.resume:
chainer.serializers.load_npz(self.resume, trainer)
trainer.run()
def train(args):
time_start = timer()
if args.gpu >= 0:
chainer.cuda.get_device_from_id(args.gpu).use()
cuda.check_cuda_available()
if args.path_vocab == '':
vocab = create_from_dir(args.path_corpus)
else:
vocab = Vocabulary()
vocab.load(args.path_vocab)
logger.info("loaded vocabulary")
if args.context_representation != 'word': # for deps or ner context representation, we need a new context vocab for NS or HSM loss function.
vocab_context = create_from_annotated_dir(args.path_corpus, representation=args.context_representation)
else :
vocab_context = vocab
loss_func = get_loss_func(args, vocab_context)
model = get_model(args, loss_func, vocab)
if args.gpu >= 0:
model.to_gpu()
logger.debug("model sent to gpu")
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
if os.path.isfile(args.path_corpus):
train, val = get_data(args.path_corpus, vocab)
if args.test:
train = train[:100]
val = val[:100]
train_iter = WindowIterator(train, args.window, args.batchsize)
val_iter = WindowIterator(val, args.window, args.batchsize, repeat=False)
else:
train_iter = DirWindowIterator(path=args.path_corpus, vocab=vocab, window_size=args.window, batch_size=args.batchsize)
updater = training.StandardUpdater(train_iter, optimizer, converter=convert, device=args.gpu)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.path_out)
if os.path.isfile(args.path_corpus):
trainer.extend(extensions.Evaluator(val_iter, model, converter=convert, device=args.gpu))
trainer.extend(extensions.LogReport())
if os.path.isfile(args.path_corpus):
trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'validation/main/loss', 'elapsed_time']))
else:
trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'elapsed_time']))
# trainer.extend(extensions.ProgressBar())
trainer.run()
model = create_model(args, model, vocab)
time_end = timer()
model.metadata["execution_time"] = time_end - time_start
return model
def main(options):
#load the config params
gpu = options['gpu']
data_path = options['path_dataset']
embeddings_path = options['path_vectors']
n_epoch = options['epochs']
batch_size = options['batchsize']
test = options['test']
embed_dim = options['embed_dim']
freeze = options['freeze_embeddings']
distance_embed_dim = options['distance_embed_dim']
#load the data
data_processor = DataProcessor(data_path)
data_processor.prepare_dataset()
train_data = data_processor.train_data
test_data = data_processor.test_data
vocab = data_processor.vocab
cnn = CNN(n_vocab=len(vocab), input_channel=1,
output_channel=100,
n_label=19,
embed_dim=embed_dim, position_dims=distance_embed_dim, freeze=freeze)
cnn.load_embeddings(embeddings_path, data_processor.vocab)
model = L.Classifier(cnn)
#use GPU if flag is set
if gpu >= 0:
model.to_gpu()
#setup the optimizer
optimizer = O.Adam()
optimizer.setup(model)
train_iter = chainer.iterators.SerialIterator(train_data, batch_size)
test_iter = chainer.iterators.SerialIterator(test_data, batch_size,repeat=False, shuffle=False)
updater = training.StandardUpdater(train_iter, optimizer, converter=convert.concat_examples, device=gpu)
trainer = training.Trainer(updater, (n_epoch, 'epoch'))
# Evaluation
test_model = model.copy()
test_model.predictor.train = False
trainer.extend(extensions.Evaluator(test_iter, test_model, device=gpu, converter=convert.concat_examples))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy']))
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
def main(options):
#load the config params
gpu = options['gpu']
data_path = options['path_dataset']
embeddings_path = options['path_vectors']
n_epoch = options['epochs']
batchsize = options['batchsize']
test = options['test']
embed_dim = options['embed_dim']
freeze = options['freeze_embeddings']
#load the data
data_processor = DataProcessor(data_path, test)
data_processor.prepare_dataset()
train_data = data_processor.train_data
dev_data = data_processor.dev_data
test_data = data_processor.test_data
vocab = data_processor.vocab
cnn = CNN(n_vocab=len(vocab), input_channel=1,
output_channel=10, n_label=2, embed_dim=embed_dim, freeze=freeze)
cnn.load_embeddings(embeddings_path, data_processor.vocab)
model = L.Classifier(cnn)
if gpu >= 0:
model.to_gpu()
#setup the optimizer
optimizer = O.Adam()
optimizer.setup(model)
train_iter = chainer.iterators.SerialIterator(train_data, batchsize)
dev_iter = chainer.iterators.SerialIterator(dev_data, batchsize,repeat=False, shuffle=False)
test_iter = chainer.iterators.SerialIterator(test_data, batchsize,repeat=False, shuffle=False)
batch1 = train_iter.next()
batch2 = dev_iter.next()
updater = training.StandardUpdater(train_iter, optimizer, converter=util.concat_examples, device=gpu)
trainer = training.Trainer(updater, (n_epoch, 'epoch'))
# Evaluation
eval_model = model.copy()
eval_model.predictor.train = False
trainer.extend(extensions.Evaluator(dev_iter, eval_model, device=gpu, converter=util.concat_examples))
test_model = model.copy()
test_model.predictor.train = False
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy']))
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
def __init__(self, folder, chain, train, test, batchsize=500, resume=True, gpu=0, nepoch=1, reports=[]):
self.reports = reports
self.nepoch = nepoch
self.folder = folder
self.chain = chain
self.gpu = gpu
if self.gpu >= 0:
chainer.cuda.get_device(gpu).use()
chain.to_gpu(gpu)
self.eval_chain = eval_chain = chain.copy()
self.chain.test = False
self.eval_chain.test = True
self.testset = test
if not os.path.exists(folder):
os.makedirs(folder)
train_iter = chainer.iterators.SerialIterator(train, batchsize, shuffle=True)
test_iter = chainer.iterators.SerialIterator(test, batchsize,
repeat=False, shuffle=False)
updater = training.StandardUpdater(train_iter, chain.optimizer, device=gpu)
trainer = training.Trainer(updater, (nepoch, 'epoch'), out=folder)
# trainer.extend(TrainingModeSwitch(chain))
trainer.extend(extensions.dump_graph('main/loss'))
trainer.extend(extensions.Evaluator(test_iter, eval_chain, device=gpu), trigger=(1,'epoch'))
trainer.extend(extensions.snapshot_object(
chain, 'chain_snapshot_epoch_{.updater.epoch:06}'), trigger=(1,'epoch'))
trainer.extend(extensions.snapshot(
filename='snapshot_epoch_{.updater.epoch:06}'), trigger=(1,'epoch'))
trainer.extend(extensions.LogReport(trigger=(1,'epoch')), trigger=(1,'iteration'))
trainer.extend(extensions.PrintReport(
['epoch']+reports), trigger=IntervalTrigger(1,'epoch'))
self.trainer = trainer
if resume:
#if resumeFrom is not None:
# trainerFile = os.path.join(resumeFrom[0],'snapshot_epoch_{:06}'.format(resumeFrom[1]))
# S.load_npz(trainerFile, trainer)
i = 1
trainerFile = os.path.join(folder,'snapshot_epoch_{:06}'.format(i))
while i <= nepoch and os.path.isfile(trainerFile):
i = i + 1
trainerFile = os.path.join(folder,'snapshot_epoch_{:06}'.format(i))
i = i - 1
trainerFile = os.path.join(folder,'snapshot_epoch_{:06}'.format(i))
if i >= 0 and os.path.isfile(trainerFile):
S.load_npz(trainerFile, trainer)