def load_chain_model(self, **kwargs):
name = self.get_name(**kwargs)
path = '{}/{}'.format(self.folder,name)
epoch = int(kwargs.get("nepochs",2))
fn = "{}/chain_snapshot_epoch_{:06}".format(path,epoch)
chain, model = self.setup_chain_model(**kwargs)
S.load_npz(fn, chain)
return chain, model
python类load_npz()的实例源码
def load_chain_model(self, **kwargs):
name = self.get_name(**kwargs)
path = '{}/{}'.format(self.folder,name)
epoch = int(kwargs.get("nepochs",2))
fn = "{}/chain_snapshot_epoch_{:06}".format(path,epoch)
chain, model = self.setup_chain_model(**kwargs)
S.load_npz(fn, chain)
return chain, model
def load_chain_model(self, **kwargs):
name = self.get_name(**kwargs)
path = '{}/{}'.format(self.folder,name)
epoch = int(kwargs.get("nepochs",2))
fn = "{}/chain_snapshot_epoch_{:06}".format(path,epoch)
chain, model = self.setup_chain_model(**kwargs)
S.load_npz(fn, chain)
return chain, model
def load_chain_model(self, **kwargs):
name = self.get_name(**kwargs)
path = '{}/{}'.format(self.folder,name)
epoch = int(kwargs.get("nepochs",2))
fn = "{}/chain_snapshot_epoch_{:06}".format(path,epoch)
chain, model = self.setup_chain_model(**kwargs)
S.load_npz(fn, chain)
return chain, model
def load_chain_model(self, **kwargs):
name = self.get_name(**kwargs)
path = '{}/{}'.format(self.folder,name)
epoch = int(kwargs.get("nepochs",2))
fn = "{}/chain_snapshot_epoch_{:06}".format(path,epoch)
chain, model = self.setup_chain_model(**kwargs)
S.load_npz(fn, chain)
return chain, model
def get_model(gpu):
model = FasterRCNN(gpu)
model.train = False
serializers.load_npz('misc/VGG16_faster_rcnn_final.model', model)
return model
def main():
parser = argparse.ArgumentParser(description='pix2pix --- GAN for Image to Image translation')
parser.add_argument('--gpu', type=int, default=0, help='GPU ID (negative value indicates CPU)')
parser.add_argument('--load_size', type=int, default=256, help='Scale image to load_size')
parser.add_argument('--g_filter_num', type=int, default=64, help="# of filters in G's 1st conv layer")
parser.add_argument('--d_filter_num', type=int, default=64, help="# of filters in D's 1st conv layer")
parser.add_argument('--output_channel', type=int, default=3, help='# of output image channels')
parser.add_argument('--n_layers', type=int, default=3, help='# of hidden layers in D')
parser.add_argument('--list_path', default='list/val_list.txt', help='Path for test list')
parser.add_argument('--out', default='result/test', help='Directory to output the result')
parser.add_argument('--G_path', default='result/G.npz', help='Path for pretrained G')
args = parser.parse_args()
if not os.path.isdir(args.out):
os.makedirs(args.out)
# Set up GAN G
G = Generator(args.g_filter_num, args.output_channel)
serializers.load_npz(args.G_path, G)
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use() # Make a specified GPU current
G.to_gpu() # Copy the model to the GPU
with open(args.list_path) as f:
imgs = f.readlines()
total = len(imgs)
for idx, img_path in enumerate(imgs):
print('{}/{} ...'.format(idx+1, total))
img_path = img_path.strip().split(' ')[-1]
img = cv2.imread(img_path, cv2.IMREAD_COLOR)[:, :, ::-1]
h, w, _ = img.shape
img = np.asarray(Image.fromarray(img).resize((args.load_size, args.load_size), resample=Image.NEAREST), dtype=np.float32)
img = np.transpose(img, (2, 0, 1))
A = data_process([img], device=args.gpu, volatile='on')
B = np.squeeze(output2img(G(A, test=True, dropout=False)))
Image.fromarray(B).resize((w, h), resample=Image.BILINEAR).save(os.path.join(args.out, os.path.basename(img_path).replace('gtFine_labelIds', 'leftImg8bit')))
def main(args):
# get datasets
source_train, source_test = chainer.datasets.get_svhn()
target_train, target_test = chainer.datasets.get_mnist(ndim=3, rgb_format=True)
source = source_train, source_test
# resize mnist to 32x32
def transform(in_data):
img, label = in_data
img = resize(img, (32, 32))
return img, label
target_train = TransformDataset(target_train, transform)
target_test = TransformDataset(target_test, transform)
target = target_train, target_test
# load pretrained source, or perform pretraining
pretrained = os.path.join(args.output, args.pretrained_source)
if not os.path.isfile(pretrained):
source_cnn = pretrain_source_cnn(source, args)
else:
source_cnn = Loss(num_classes=10)
serializers.load_npz(pretrained, source_cnn)
# how well does this perform on target domain?
test_pretrained_on_target(source_cnn, target, args)
# initialize the target cnn (do not use source_cnn.copy)
target_cnn = Loss(num_classes=10)
# copy parameters from source cnn to target cnn
target_cnn.copyparams(source_cnn)
train_target_cnn(source, target, source_cnn, target_cnn, args)
def main():
parser = argparse.ArgumentParser(description='Regression predict')
parser.add_argument('--modelpath', '-m', default='result/mlp.model',
help='Model path to be loaded')
parser.add_argument('--gpu', '-g', type=int, default=-1,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--unit', '-u', type=int, default=50,
help='Number of units')
args = parser.parse_args()
batchsize = 128
# Load dataset
data, target = load_data()
X = data.reshape((-1, 1)).astype(np.float32)
y = target.reshape((-1, 1)).astype(np.float32)
# Load trained model
model = SklearnWrapperRegressor(MLP(args.unit, 1), device=args.gpu)
serializers.load_npz(args.modelpath, model)
# --- Example 1. Predict all test data ---
outputs = model.predict(X,
batchsize=batchsize,
retain_inputs=False,)
# --- Plot result ---
plt.figure()
plt.scatter(X, y, label='actual')
plt.plot(X, outputs, label='predict', color='red')
plt.legend()
plt.show()
plt.savefig('predict.png')
def load(self, name):
serializers.load_npz(name+".model", self.dqn.model)
serializers.load_npz(name+".optimizer", self.dqn.optimizer)
def main(args):
# load config file and obtain embed dimension and hidden dimension
with open(args.config_path, 'r') as fi:
config = json.load(fi)
embed_dim = config["dim"]
hidden_dim = config["unit"]
print("Embedding Dimension: {}\nHidden Dimension: {}\n".format(embed_dim, hidden_dim), file=sys.stderr)
# load data
dp = DataProcessor(data_path=config["data"], test_run=False)
dp.prepare_dataset()
# create model
vocab = dp.vocab
model = RecNetClassifier(QRNNLangModel(n_vocab=len(vocab), embed_dim=embed_dim, out_size=hidden_dim))
# load parameters
print("loading paramters to model...", end='', file=sys.stderr, flush=True)
S.load_npz(filename=args.model_path, obj=model)
print("done.", file=sys.stderr, flush=True)
# create iterators from loaded data
bprop_len = config["bproplen"]
test_data = dp.test_data
test_iter = ParallelSequentialIterator(test_data, 1, repeat=False, bprop_len=bprop_len)
# evaluate the model
print('testing...', end='', file=sys.stderr, flush=True)
model.predictor.reset_state()
model.predictor.train = False
evaluator = extensions.Evaluator(test_iter, model, converter=convert)
result = evaluator()
print('done.\n', file=sys.stderr, flush=True)
print('Perplexity: {}'.format(np.exp(float(result['main/loss']))), end='', file=sys.stderr, flush=True)
def __init__(self):
self._model = FastStyleNet()
serializers.load_npz('composition.model', self._model)
cuda.get_device(0).use()
self._model.to_gpu()
def load_model(self, model):
if not os.path.exists(self.model_path):
raise Exception("model file directory does not exist.")
suffix = ".model"
keyword = model.__class__.__name__.lower()
candidates = []
for f in os.listdir(self.model_path):
if keyword in f and f.endswith(suffix):
candidates.append(f)
candidates.sort()
latest = candidates[-1]
#print("targets {}, pick up {}.".format(candidates, latest))
model_file = os.path.join(self.model_path, latest)
serializers.load_npz(model_file, model)
def _transform(in_image,loaded,m_path):
if m_path == 'none':
return in_image
if not loaded:
serializers.load_npz(m_path, model)
if RUN_ON_GPU:
cuda.get_device(0).use() #assuming only one core
model.to_gpu()
print "loaded"
xp = np if not RUN_ON_GPU else cuda.cupy
image = xp.asarray(in_image, dtype=xp.float32).transpose(2, 0, 1)
image = image.reshape((1,) + image.shape)
image -= 120
x = Variable(image)
y = model(x)
result = cuda.to_cpu(y.data)
result = result.transpose(0, 2, 3, 1)
result = result.reshape((result.shape[1:]))
result += 120
result = np.uint8(result)
return result
def train_tasks_continuosly(
args, model, train, test, train2, test2, enable_ewc):
# Train Task A or load trained model
if os.path.exists("mlp_taskA.model") or args.skip_taskA:
print("load taskA model")
serializers.load_npz("./model50/mlp_taskA.model", model)
else:
print("train taskA")
train_task(args, "train_task_a"+("_with_ewc" if enable_ewc else ""),
model, args.epoch, train,
{"TaskA": test}, args.batchsize)
print("save the model")
serializers.save_npz("mlp_taskA.model", model)
if enable_ewc:
print("enable EWC")
model.compute_fisher(train)
model.store_variables()
# Train Task B
print("train taskB")
train_task(args, "train_task_ab"+("_with_ewc" if enable_ewc else ""),
model, args.epoch, train2,
{"TaskA": test, "TaskB": test2}, args.batchsize)
print("save the model")
serializers.save_npz(
"mlp_taskAB"+("_with_ewc" if enable_ewc else "")+".model", model)
def parse(model_file, embed_file):
# Load files
Log.i('initialize preprocessor with %s' % embed_file)
processor = Preprocessor(embed_file)
Log.v('')
Log.v("initialize ...")
Log.v('')
with np.load(model_file) as f:
embeddings = np.zeros(f['embed/W'].shape, dtype=np.float32)
# Set up a neural network
cls = BLSTMCRF if _use_crf else BLSTM
model = cls(
embeddings=embeddings,
n_labels=4,
dropout=0.2,
train=False,
)
Log.i("loading a model from %s ..." % model_file)
serializers.load_npz(model_file, model)
LABELS = ['B', 'M', 'E', 'S']
def _process(raw_text):
if not raw_text:
return
xs = [processor.transform_one([c for c in raw_text])]
ys = model.parse(xs)
labels = [LABELS[y] for y in ys[0]]
print(' '.join(labels))
seq = []
for c, label in zip(raw_text, labels):
seq.append(c)
if label == 'E' or label == 'S':
seq.append(' ')
print(''.join(seq))
print('-')
print("Input a Chinese sentence! (use 'q' to exit)")
while True:
x = input()
if x == 'q':
break
_process(x)
def main():
args = parse_args()
gen = net.Generator1()
dis = net.Discriminator1()
clip_rect = None
if args.clip_rect:
clip_rect = map(int, args.clip_rect.split(','))
clip_rect = tuple([clip_rect[0], clip_rect[1], clip_rect[0] + clip_rect[2], clip_rect[1] + clip_rect[3]])
gpu_device = None
if args.gpu >= 0:
device_id = args.gpu
cuda.get_device(device_id).use()
gen.to_gpu(device_id)
dis.to_gpu(device_id)
optimizer_gen = optimizers.Adam(alpha=0.001)
optimizer_gen.setup(gen)
optimizer_dis = optimizers.Adam(alpha=0.001)
optimizer_dis.setup(dis)
if args.input != None:
serializers.load_npz(args.input + '.gen.model', gen)
serializers.load_npz(args.input + '.gen.state', optimizer_gen)
serializers.load_npz(args.input + '.dis.model', dis)
serializers.load_npz(args.input + '.dis.state', optimizer_dis)
if args.out_image_dir != None:
if not os.path.exists(args.out_image_dir):
try:
os.mkdir(args.out_image_dir)
except:
print 'cannot make directory {}'.format(args.out_image_dir)
exit()
elif not os.path.isdir(args.out_image_dir):
print 'file path {} exists but is not directory'.format(args.out_image_dir)
exit()
with open(args.dataset, 'rb') as f:
images = pickle.load(f)
train(gen, dis, optimizer_gen, optimizer_dis, images, args.epoch, batch_size=args.batch_size, margin=args.margin, save_epoch=args.save_epoch, lr_decay=args.lr_decay, output_path=args.output, out_image_dir=args.out_image_dir, clip_rect=clip_rect)
def main():
args = parse_args()
gen1 = net.Generator1()
gen2 = net.Generator2()
dis = net.Discriminator2()
clip_rect = None
if args.clip_rect:
clip_rect = map(int, args.clip_rect.split(','))
clip_rect = tuple([clip_rect[0], clip_rect[1], clip_rect[0] + clip_rect[2], clip_rect[1] + clip_rect[3]])
device_id = None
if args.gpu >= 0:
device_id = args.gpu
cuda.get_device(device_id).use()
gen1.to_gpu(device_id)
gen2.to_gpu(device_id)
dis.to_gpu(device_id)
optimizer_gen = optimizers.Adam(alpha=0.001)
optimizer_gen.setup(gen2)
optimizer_dis = optimizers.Adam(alpha=0.001)
optimizer_dis.setup(dis)
serializers.load_npz(args.stack1 + '.gen.model', gen1)
if args.input != None:
serializers.load_npz(args.input + '.gen.model', gen2)
serializers.load_npz(args.input + '.gen.state', optimizer_gen)
serializers.load_npz(args.input + '.dis.model', dis)
serializers.load_npz(args.input + '.dis.state', optimizer_dis)
if args.out_image_dir != None:
if not os.path.exists(args.out_image_dir):
try:
os.mkdir(args.out_image_dir)
except:
print 'cannot make directory {}'.format(args.out_image_dir)
exit()
elif not os.path.isdir(args.out_image_dir):
print 'file path {} exists but is not directory'.format(args.out_image_dir)
exit()
with open(args.dataset, 'rb') as f:
images = pickle.load(f)
train(gen1, gen2, dis, optimizer_gen, optimizer_dis, images, args.epoch, batch_size=args.batch_size, margin=args.margin, save_epoch=args.save_epoch, lr_decay=args.lr_decay, output_path=args.output, out_image_dir=args.out_image_dir, clip_rect=clip_rect)
def inference():
cap = cv2.VideoCapture(0)
# load model
model = Netmodel('eval-model', CLASSES)
serializers.load_npz(MODEL_NAME, model)
cuda.get_device(GPU_ID).use()
model.to_gpu()
LUT = fromHEX2RGB(stats_opts['colormap'] )
fig3, axarr3 = plt.subplots(1, 1)
batchRGB = np.zeros((1, 3, NEWSIZE[1], NEWSIZE[0]), dtype='float32')
while(True):
# Capture frame-by-frame
ret, frame = cap.read()
# process frame
im = misc.imresize(frame, NEWSIZE, interp='bilinear')
# convertion from HxWxCH to CHxWxH
batchRGB[0,:,:,:] = im.astype(np.float32).transpose((2,1,0))
batchRGBn = batchRGB - 127.0
# data ready
batch = chainer.Variable(cuda.cupy.asarray(batchRGBn))
# make predictions
model((batch, []), test_mode=2)
pred = model.probs.data.argmax(1)
# move data back to CPU
pred_ = cuda.to_cpu(pred)
pred_ = LUT[pred_+1,:].squeeze()
pred_ = pred_.transpose((1,0,2))
pred2 = cv2.cvtColor(pred_, cv2.COLOR_BGR2RGB)
# Display the resulting frame
cv2.imshow('frame',frame)
cv2.imshow('pred',pred2)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()
def inference():
cv2.namedWindow('frame', cv2.WINDOW_NORMAL)
#cv2.namedWindow('pred', cv2.WINDOW_NORMAL)
# load model
model = Netmodel('eval-model', CLASSES)
serializers.load_npz(MODEL_NAME, model)
cuda.get_device(GPU_ID).use()
model.to_gpu()
LUT = fromHEX2RGB(stats_opts['colormap'] )
fig3, axarr3 = plt.subplots(1, 1)
batchRGB = np.zeros((1, 3, NEWSIZE[1], NEWSIZE[0]), dtype='float32')
# go throught the data
flist = []
with open(TESTFILE) as f:
for line in f:
cline = re.split('\n',line)
#print(cline[0])
frame = misc.imread(cline[0])
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# process frame
im = misc.imresize(frame, NEWSIZE, interp='bilinear')
# convertion from HxWxCH to CHxWxH
batchRGB[0,:,:,:] = im.astype(np.float32).transpose((2,1,0))
batchRGBn = batchRGB - 127.0
# data ready
batch = chainer.Variable(cuda.cupy.asarray(batchRGBn))
# make predictions
model((batch, []), test_mode=2)
pred = model.probs.data.argmax(1)
# move data back to CPU
pred_ = cuda.to_cpu(pred)
pred_ = LUT[pred_+1,:].squeeze()
pred_ = pred_.transpose((1,0,2))
pred2 = cv2.cvtColor(pred_, cv2.COLOR_BGR2RGB)
#ipdb.set_trace()
disp = (0.4*im + 0.6*pred2).astype(np.uint8)
# Display the resulting frame
cv2.imshow('frame',disp)
#cv2.imshow('pred',pred2)
if cv2.waitKey(-1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()