python类load_npz()的实例源码

dqn_agent.py 文件源码 项目:chainer_pong 作者: icoxfog417 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, actions, epsilon=1, n_history=4, on_gpu=False, model_path="", load_if_exist=True):
        self.actions = actions
        self.epsilon = epsilon
        self.q = Q(n_history, len(actions), on_gpu)
        self._state = []
        self._observations = [
            np.zeros((self.q.SIZE, self.q.SIZE), np.float32), 
            np.zeros((self.q.SIZE, self.q.SIZE), np.float32)
        ]  # now & pre
        self.last_action = 0
        self.model_path = model_path if model_path else os.path.join(os.path.dirname(__file__), "./store")
        if not os.path.exists(self.model_path):
            print("make directory to store model at {0}".format(self.model_path))
            os.mkdir(self.model_path)
        else:
            models = self.get_model_files()
            if load_if_exist and len(models) > 0:
                print("load model file {0}.".format(models[-1]))
                serializers.load_npz(os.path.join(self.model_path, models[-1]), self.q)  # use latest model
yolov2_predict.py 文件源码 项目:chainer-object-detection 作者: dsanno 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, model_path, config):
        # hyper parameters
        self.n_boxes = 5
        self.config = config
        self.labels = config['categories']
        self.n_classes = len(self.labels)
        self.detection_thresh = config['confidence']
        self.iou_thresh = config['iou']
        anchors = config['anchors']
        # load model
        print('loading model...')
        yolov2 = YOLOv2(n_classes=self.n_classes, n_boxes=self.n_boxes)
        serializers.load_npz(model_path, yolov2)
        model = YOLOv2Predictor(yolov2)
        model.init_anchor(anchors)
        model.predictor.finetune = False
        self.model = model
yolov2_predict_caltech.py 文件源码 项目:chainer-object-detection 作者: dsanno 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, model_path, config):
        # hyper parameters
        self.n_boxes = 5
        self.config = config
        self.labels = config['categories']
        self.n_classes = len(self.labels)
        self.detection_thresh = config['confidence']
        self.iou_thresh = config['iou']
        anchors = config['anchors']
        # load model
        print('loading model...')
        yolov2 = YOLOv2(n_classes=self.n_classes, n_boxes=self.n_boxes)
        serializers.load_npz(model_path, yolov2)
        model = YOLOv2Predictor(yolov2)
        model.init_anchor(anchors)
        model.predictor.finetune = False
        self.model = model
traintest.py 文件源码 项目:LSTMVAE 作者: ashwatthaman 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test(args,encdec,model_name,categ_arr=[],predictFlag=False):
    serializers.load_npz(model_name,encdec)
    if args.gpu>=0:
        import cupy as cp
        global xp;xp=cp
        encdec.to_gpu()
    encdec.setBatchSize(args.batchsize)

    if "cvae" in model_name:
        for categ in categ_arr:
            print("categ:{}".format(encdec.categ_vocab.itos(categ)))
            if predictFlag:
                encdec.predict(args.batchsize,tag=categ,randFlag=False)
    elif predictFlag:
        encdec.predict(args.batchsize,randFlag=False)
    return encdec
model_common.py 文件源码 项目:LSTMVAE 作者: ashwatthaman 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def loadModel(self,model_name_base,args):
        first_e = 0
        model_name = ""
        for e in range(args.epoch):
            model_name_tmp = model_name_base.format(args.dataname, args.dataname, e,args.n_latent)
            if os.path.exists(model_name_tmp):
                model_name = model_name_tmp
                self.setEpochNow(e + 1)

        if os.path.exists(model_name):
            print(model_name)
            # serializers.load_npz(model_name, encdec)
            serializers.load_npz(model_name, self)
            print("loaded_{}".format(model_name))
            first_e = self.epoch_now
        else:
            print("loadW2V")
            if os.path.exists(args.premodel):
                self.loadW(args.premodel)
            else:
                print("wordvec model doesnt exists.")
        return first_e
basicTrainer.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def loadInfo(self, folder, model, state, smanager):
        if(not os.path.exists(folder)):
            return (model, state, 1)
        list_files = []
        model_name = model.getName()
        for file in os.listdir(folder):
            if(file.startswith(model_name) and file.endswith(".state")):
                list_files.append(file)
        if(len(list_files) > 0):
            sorted_list = self.natural_sort(list_files)
            fname_state = sorted_list[-1]

            bname = re.split('\.',fname_state)[0]
            fname_model = bname + '.model'
            fname_stats = bname + '.stats'
            epoch = int(re.split('_|\.', bname)[-1]) + 1
            serializers.load_npz(folder + '/' + fname_state, state)
            serializers.load_npz(folder + '/' + fname_model, model)
            smanager.load(folder + '/' + fname_stats)

        else:
            epoch = 1
            # no prev. models...
        return (model, state, epoch)
fasterRCNN.py 文件源码 项目:deel 作者: uei 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self,modelpath='misc/VGG16_faster_rcnn_final.model',
                    mean=[102.9801, 115.9465, 122.7717],
                    in_size=224):
        super(FasterRCNN,self).__init__('FasterRCNN',in_size)
        self.func = FRCNN(Deel.gpu)
        self.func.train=False
        serializers.load_npz('misc/VGG16_faster_rcnn_final.model', self.func)

        ImageNet.mean_image = np.ndarray((3, 256, 256), dtype=np.float32)
        ImageNet.mean_image[0] = mean[0]
        ImageNet.mean_image[1] = mean[1]
        ImageNet.mean_image[2] = mean[2]
        ImageNet.in_size = in_size

        self.labels = CLASSES

        self.batchsize = 1
        xp = Deel.xp
        self.x_batch = xp.ndarray((self.batchsize, 3, self.in_size, self.in_size), dtype=np.float32)

        if Deel.gpu >=0:
            self.func = self.func.to_gpu(Deel.gpu)
        self.optimizer = optimizers.Adam()
        self.optimizer.setup(self.func)
chainer_alex.py 文件源码 项目:mlimages 作者: icoxfog417 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def predict(limit):
    _limit = limit if limit > 0 else 5

    td = TrainingData(LABEL_FILE, img_root=IMAGES_ROOT, mean_image_file=MEAN_IMAGE_FILE, image_property=IMAGE_PROP)
    label_def = LabelingMachine.read_label_def(LABEL_DEF_FILE)
    model = alex.Alex(len(label_def))
    serializers.load_npz(MODEL_FILE, model)

    i = 0
    for arr, im in td.generate():
        x = np.ndarray((1,) + arr.shape, arr.dtype)
        x[0] = arr
        x = chainer.Variable(np.asarray(x), volatile="on")
        y = model.predict(x)
        p = np.argmax(y.data)
        print("predict {0}, actual {1}".format(label_def[p], label_def[im.label]))
        im.image.show()
        i += 1
        if i >= _limit:
            break
cnn_train.py 文件源码 项目:cgp-cnn 作者: sg-nm 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test(self, cgp, model_file, comp_graph='comp_graph.dot', batchsize=256):
        chainer.cuda.get_device(0).use()  # Make a specified GPU current
        model = CGP2CNN(cgp, self.n_class)
        print('\tLoad model from', model_file)
        serializers.load_npz(model_file, model)
        model.to_gpu(0)
        test_accuracy, test_loss = self.__test(model, batchsize)
        print('\tparamNum={}'.format(model.param_num))
        print('\ttest mean loss={}, test accuracy={}'.format(test_loss / self.test_data_num, test_accuracy / self.test_data_num))

        if comp_graph is not None:
            with open(comp_graph, 'w') as o:
                g = computational_graph.build_computational_graph((model.loss,))
                o.write(g.dump())
                del g
                print('\tCNN graph generated ({}).'.format(comp_graph))

        return test_accuracy, test_loss
use_voxelchain.py 文件源码 项目:voxcelchain 作者: hiroaki-kaneda 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def main():
    model = voxelchain.VoxelChain()
    serializers.load_npz('result/VoxelChain.model',model)
    use_model(model)
voxelchain_visualize.py 文件源码 项目:voxcelchain 作者: hiroaki-kaneda 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def main():
    model = voxelchain.VoxelChain()
    serializers.load_npz('result/VoxelChain.model',model)
    conv1(model)
    conv2(model)
    create_graph()
copy_yolov2_weights.py 文件源码 项目:chainer-object-detection 作者: dsanno 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def main():
    args = parse_args()

    print("loading classifier model...")
    input_model = YOLOv2Classifier(args.input_class)
    serializers.load_npz(args.input_path, input_model)

    model = YOLOv2(args.output_class, args.box)
    copy_conv_layer(input_model, model, partial_layer)
    copy_bias_layer(input_model, model, partial_layer)
    copy_bn_layer(input_model, model, partial_layer)

    print("saving model to %s" % (args.output_path))
    serializers.save_npz(args.output_path, model)
agent.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def load_npz_no_strict(filename, obj):
    try:
        serializers.load_npz(filename, obj)
    except KeyError as e:
        warnings.warn(repr(e))
        with numpy.load(filename) as f:
            d = serializers.NpzDeserializer(f, strict=False)
            d.load(obj)
forward.py 文件源码 项目:chainer-faster-rcnn 作者: mitmul 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_model(gpu):
    model = FasterRCNN(gpu)
    model.train = False
    serializers.load_npz('data/VGG16_faster_rcnn_final.model', model)

    return model
nutszebra_cifar100.py 文件源码 项目:trainer 作者: nutszebra 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def model_init(self):
        load_model = self.load_model
        model = self.model
        gpu = self.gpu
        if load_model is None:
            print('ReLU weight initialization')
            model.weight_initialization()
        else:
            print('loading ' + self.load_model)
            serializers.load_npz(load_model, model)
        model.check_gpu(gpu)
nutszebra_unilabel_trainer.py 文件源码 项目:trainer 作者: nutszebra 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def model_init(self):
        load_model = self.load_model
        model = self.model
        gpu = self.gpu
        if load_model is None:
            print('ReLU weight initialization')
            model.weight_initialization()
        else:
            print('loading ' + self.load_model)
            serializers.load_npz(load_model, model)
        model.check_gpu(gpu)
nutszebra_ilsvrc_object_localization.py 文件源码 项目:trainer 作者: nutszebra 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def model_init(self):
        load_model = self.load_model
        model = self.model
        gpu = self.gpu
        if load_model is None:
            print('ReLU weight initialization')
            model.weight_initialization()
        else:
            print('loading ' + self.load_model)
            serializers.load_npz(load_model, model)
        model.check_gpu(gpu)
nutszebra_ilsvrc_object_localization_with_multi_gpus.py 文件源码 项目:trainer 作者: nutszebra 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def model_init(model, load_model):
        if load_model is None:
            print('Weight initialization')
            model.weight_initialization()
        else:
            print('loading {}'.format(load_model))
            serializers.load_npz(load_model, model)
nutszebra_chainer.py 文件源码 项目:trainer 作者: nutszebra 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def load_model(self, path=''):
        serializers.load_npz(path, self)
nutszebra_cifar10.py 文件源码 项目:trainer 作者: nutszebra 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def model_init(self):
        load_model = self.load_model
        model = self.model
        gpu = self.gpu
        if load_model is None:
            print('ReLU weight initialization')
            model.weight_initialization()
        else:
            print('loading ' + self.load_model)
            serializers.load_npz(load_model, model)
        model.check_gpu(gpu)
model_reader.py 文件源码 项目:context2vec 作者: orenmel 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def read_lstm_model(self, params, train):

        assert train == False # reading a model to continue training is currently not supported

        words_file = params['config_path'] + params['words_file']
        model_file = params['config_path'] + params['model_file']
        unit = int(params['unit'])
        deep = (params['deep'] == 'yes')
        drop_ratio = float(params['drop_ratio'])

        #read and normalize target word embeddings
        w, word2index, index2word = self.read_words(words_file) 
        s = numpy.sqrt((w * w).sum(1))
        s[s==0.] = 1.
        w /= s.reshape((s.shape[0], 1))  # normalize

        context_word_units = unit
        lstm_hidden_units = IN_TO_OUT_UNITS_RATIO*unit
        target_word_units = IN_TO_OUT_UNITS_RATIO*unit

        cs = [1 for _ in range(len(word2index))] # dummy word counts - not used for eval
        loss_func = L.NegativeSampling(target_word_units, cs, NEGATIVE_SAMPLING_NUM) # dummy loss func - not used for eval

        model = BiLstmContext(deep, self.gpu, word2index, context_word_units, lstm_hidden_units, target_word_units, loss_func, train, drop_ratio)
        S.load_npz(model_file, model)

        return w, word2index, index2word, model
pose_estimator.py 文件源码 项目:DeepPoseComparison 作者: ynaka81 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def __init__(self, Nj, gpu, model_file, filename):
        # initialize model to estimate.
        self.model = AlexNet(Nj)
        self.gpu = gpu
        serializers.load_npz(model_file, self.model)
        # prepare gpu.
        if self.gpu >= 0:
            chainer.cuda.get_device(gpu).use()
            self.model.to_gpu()
        # load dataset to estimate.
        self.dataset = PoseDataset(filename)
core_process.py 文件源码 项目:DeepPoseComparison 作者: ynaka81 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, Nj, gpu, model_file, filename):
        # initialize model to estimate.
        self.model = AlexNet(Nj, use_visibility=True)
        self.gpu = gpu
        serializers.load_npz(model_file, self.model)
        # prepare gpu.
        if self.gpu >= 0:
            chainer.cuda.get_device(gpu).use()
            self.model.to_gpu()
        # load dataset to estimate.
        self.dataset = PoseDataset(filename)
segmentation.py 文件源码 项目:rnn-morpheme-analyzer 作者: mitaki28 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def load(load_dir, epoch):
    with (load_dir/meta_name).open('rb') as f:
        storage = Storage(*np.load(f)[0])
    serializers.load_npz(
        str(load_dir/model_name(epoch)),
        storage.model
    )
    serializers.load_npz(
        str(load_dir/optimizer_name(epoch)),
        storage.optimizer
    )
    return storage
analyzer.py 文件源码 项目:rnn-morpheme-analyzer 作者: mitaki28 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def load(load_dir, epoch):
    with (load_dir/meta_name).open('rb') as f:
        storage = Storage(*np.load(f)[0])
    serializers.load_npz(
        str(load_dir/model_name(epoch)),
        storage.model
    )
    serializers.load_npz(
        str(load_dir/optimizer_name(epoch)),
        storage.optimizer
    )
    return storage
multi_input_edge.py 文件源码 项目:ddnn 作者: kunglab 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def load_chain_model(self, **kwargs):
        name = self.get_name(**kwargs)
        path = '{}/{}'.format(self.folder,name)
        epoch = int(kwargs.get("nepochs",2))
        fn = "{}/chain_snapshot_epoch_{:06}".format(path,epoch)

        chain, model = self.setup_chain_model(**kwargs)
        S.load_npz(fn, chain)
        return chain, model
binary.py 文件源码 项目:ddnn 作者: kunglab 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def load_chain_model(self, **kwargs):
        name = self.get_name(**kwargs)
        path = '{}/{}'.format(self.folder,name)
        epoch = int(kwargs.get("nepochs",2))
        fn = "{}/chain_snapshot_epoch_{:06}".format(path,epoch)

        chain, model = self.setup_chain_model(**kwargs)
        S.load_npz(fn, chain)
        return chain, model
binary_cloud.py 文件源码 项目:ddnn 作者: kunglab 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def load_chain_model(self, **kwargs):
        name = self.get_name(**kwargs)
        path = '{}/{}'.format(self.folder,name)
        epoch = int(kwargs.get("nepochs",2))
        fn = "{}/chain_snapshot_epoch_{:06}".format(path,epoch)

        chain, model = self.setup_chain_model(**kwargs)
        S.load_npz(fn, chain)
        return chain, model
single_input.py 文件源码 项目:ddnn 作者: kunglab 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def load_chain_model(self, **kwargs):
        name = self.get_name(**kwargs)
        path = '{}/{}'.format(self.folder,name)
        epoch = int(kwargs.get("nepochs",2))
        fn = "{}/chain_snapshot_epoch_{:06}".format(path,epoch)

        chain, model = self.setup_chain_model(**kwargs)
        S.load_npz(fn, chain)
        return chain, model
multi_input_edge_with_dropout.py 文件源码 项目:ddnn 作者: kunglab 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def load_chain_model(self, **kwargs):
        name = self.get_name(**kwargs)
        path = '{}/{}'.format(self.folder,name)
        epoch = int(kwargs.get("nepochs",2))
        fn = "{}/chain_snapshot_epoch_{:06}".format(path,epoch)

        chain, model = self.setup_chain_model(**kwargs)
        S.load_npz(fn, chain)
        return chain, model


问题


面经


文章

微信
公众号

扫码关注公众号