python类Adam()的实例源码

test_dqn_like.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def make_optimizer(self, env, q_func):
        opt = optimizers.Adam()
        opt.setup(q_func)
        return opt
test_agents.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def create_agent(self, env):
        model = agents.a3c.A3CSeparateModel(
            pi=create_stochastic_policy_for_env(env),
            v=create_v_function_for_env(env))
        opt = optimizers.Adam()
        opt.setup(model)
        return agents.A3C(model, opt, t_max=1, gamma=0.99)
test_agents.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def create_agent(self, env):
        model = agents.acer.ACERSeparateModel(
            pi=create_stochastic_policy_for_env(env),
            q=create_state_q_function_for_env(env))
        opt = optimizers.Adam()
        opt.setup(model)
        rbuf = replay_buffer.EpisodicReplayBuffer(10 ** 4)
        return agents.ACER(model, opt, t_max=1, gamma=0.99,
                           replay_buffer=rbuf)
test_agents.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def create_agent(self, env):
        model = create_state_q_function_for_env(env)
        rbuf = replay_buffer.ReplayBuffer(10 ** 5)
        opt = optimizers.Adam()
        opt.setup(model)
        explorer = explorers.ConstantEpsilonGreedy(
            0.2, random_action_func=lambda: env.action_space.sample())
        return agents.DoubleDQN(
            model, opt, rbuf, gamma=0.99, explorer=explorer)
test_agents.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def create_agent(self, env):
        model = create_state_q_function_for_env(env)
        opt = optimizers.Adam()
        opt.setup(model)
        explorer = explorers.ConstantEpsilonGreedy(
            0.2, random_action_func=lambda: env.action_space.sample())
        return agents.NSQ(
            q_function=model,
            optimizer=opt,
            t_max=1,
            gamma=0.99,
            i_target=100,
            explorer=explorer)
test_agents.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def create_agent(self, env):
        model = agents.ddpg.DDPGModel(
            policy=create_deterministic_policy_for_env(env),
            q_func=create_state_action_q_function_for_env(env))
        rbuf = replay_buffer.ReplayBuffer(10 ** 5)
        opt_a = optimizers.Adam()
        opt_a.setup(model.policy)
        opt_b = optimizers.Adam()
        opt_b.setup(model.q_function)
        explorer = explorers.AdditiveGaussian(scale=1)
        return agents.DDPG(model, opt_a, opt_b, rbuf, gamma=0.99,
                           explorer=explorer)
test_agents.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def create_agent(self, env):
        model = agents.ddpg.DDPGModel(
            policy=create_stochastic_policy_for_env(env),
            q_func=create_state_action_q_function_for_env(env))
        rbuf = replay_buffer.ReplayBuffer(10 ** 5)
        opt_a = optimizers.Adam()
        opt_a.setup(model.policy)
        opt_b = optimizers.Adam()
        opt_b.setup(model.q_function)
        explorer = explorers.AdditiveGaussian(scale=1)
        return agents.PGT(model, opt_a, opt_b, rbuf, gamma=0.99,
                          explorer=explorer)
qlearning.py 文件源码 项目:malmo-challenge 作者: Kaixhin 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, model, target, device_id=-1,
                 learning_rate=0.00025, momentum=.9,
                 minibatch_size=32, update_interval=10000):

        assert isinstance(model, ChainerModel), \
            'model should inherit from ChainerModel'

        super(QNeuralNetwork, self).__init__(model.input_shape,
                                             model.output_shape)

        self._gpu_device = None
        self._loss_val = 0

        # Target model update method
        self._steps = 0
        self._target_update_interval = update_interval

        # Setup model and target network
        self._minibatch_size = minibatch_size
        self._model = model
        self._target = target
        self._target.copyparams(self._model)

        # If GPU move to GPU memory
        if device_id >= 0:
            with cuda.get_device(device_id) as device:
                self._gpu_device = device
                self._model.to_gpu(device)
                self._target.to_gpu(device)

        # Setup optimizer
        self._optimizer = Adam(learning_rate, momentum, 0.999)
        self._optimizer.setup(self._model)
qlearning.py 文件源码 项目:malmo-challenge 作者: Microsoft 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, model, target, device_id=-1,
                 learning_rate=0.00025, momentum=.9,
                 minibatch_size=32, update_interval=10000):

        assert isinstance(model, ChainerModel), \
            'model should inherit from ChainerModel'

        super(QNeuralNetwork, self).__init__(model.input_shape,
                                             model.output_shape)

        self._gpu_device = None
        self._loss_val = 0

        # Target model update method
        self._steps = 0
        self._target_update_interval = update_interval

        # Setup model and target network
        self._minibatch_size = minibatch_size
        self._model = model
        self._target = target
        self._target.copyparams(self._model)

        # If GPU move to GPU memory
        if device_id >= 0:
            with cuda.get_device(device_id) as device:
                self._gpu_device = device
                self._model.to_gpu(device)
                self._target.to_gpu(device)

        # Setup optimizer
        self._optimizer = Adam(learning_rate, momentum, 0.999)
        self._optimizer.setup(self._model)
ddqn.py 文件源码 项目:double-dqn 作者: musyoku 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self):
        print "Initializing DQN..."
        self.exploration_rate = config.rl_initial_exploration
        self.fcl_eliminated = True if len(config.q_fc_hidden_units) == 0 else False

        # Q Network
        conv, fc = build_q_network(config)
        self.conv = conv
        if self.fcl_eliminated is False:
            self.fc = fc
        self.load()
        self.update_target()

        # Optimizer
        ## RMSProp, ADAM, AdaGrad, AdaDelta, ...
        ## See http://docs.chainer.org/en/stable/reference/optimizers.html
        self.optimizer_conv = optimizers.Adam(alpha=config.rl_learning_rate, beta1=config.rl_gradient_momentum)
        self.optimizer_conv.setup(self.conv)
        if self.fcl_eliminated is False:
            self.optimizer_fc = optimizers.Adam(alpha=config.rl_learning_rate, beta1=config.rl_gradient_momentum)
            self.optimizer_fc.setup(self.fc)

        # Replay Memory
        ## (state, action, reward, next_state, episode_ends)
        shape_state = (config.rl_replay_memory_size, config.rl_agent_history_length * config.ale_screen_channels, config.ale_scaled_screen_size[1], config.ale_scaled_screen_size[0])
        shape_action = (config.rl_replay_memory_size,)
        self.replay_memory = [
            np.zeros(shape_state, dtype=np.float32),
            np.zeros(shape_action, dtype=np.uint8),
            np.zeros(shape_action, dtype=np.int8),
            np.zeros(shape_state, dtype=np.float32),
            np.zeros(shape_action, dtype=np.bool)
        ]
        self.total_replay_memory = 0
        self.no_op_count = 0
optimizers.py 文件源码 项目:chainer-speech-recognition 作者: musyoku 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_learning_rate(opt):
    if isinstance(opt, optimizers.NesterovAG):
        return opt.lr
    if isinstance(opt, optimizers.MomentumSGD):
        return opt.lr
    if isinstance(opt, optimizers.SGD):
        return opt.lr
    if isinstance(opt, optimizers.Adam):
        return opt.alpha
    raise NotImplementedError()
optimizers.py 文件源码 项目:chainer-speech-recognition 作者: musyoku 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def set_learning_rate(opt, lr):
    if isinstance(opt, optimizers.NesterovAG):
        opt.lr = lr
        return
    if isinstance(opt, optimizers.MomentumSGD):
        opt.lr = lr
        return
    if isinstance(opt, optimizers.SGD):
        opt.lr = lr
        return
    if isinstance(opt, optimizers.Adam):
        opt.alpha = lr
        return
    raise NotImplementedError()
optimizers.py 文件源码 项目:chainer-speech-recognition 作者: musyoku 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def set_momentum(opt, momentum):
    if isinstance(opt, optimizers.NesterovAG):
        opt.momentum = momentum
        return
    if isinstance(opt, optimizers.MomentumSGD):
        opt.momentum = momentum
        return
    if isinstance(opt, optimizers.SGD):
        return
    if isinstance(opt, optimizers.Adam):
        opt.beta1 = momentum
        return
    raise NotImplementedError()
optimizers.py 文件源码 项目:chainer-speech-recognition 作者: musyoku 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def get_optimizer(name, lr, momentum):
    if name == "sgd":
        return optimizers.SGD(lr=lr)
    if name == "msgd":
        return optimizers.MomentumSGD(lr=lr, momentum=momentum)
    if name == "nesterov":
        return optimizers.NesterovAG(lr=lr, momentum=momentum)
    if name == "adam":
        return optimizers.Adam(alpha=lr, beta1=momentum)
    raise NotImplementedError()
optim.py 文件源码 项目:chainer-qrnn 作者: musyoku 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_current_learning_rate(opt):
    if isinstance(opt, optimizers.NesterovAG):
        return opt.lr
    if isinstance(opt, optimizers.MomentumSGD):
        return opt.lr
    if isinstance(opt, optimizers.SGD):
        return opt.lr
    if isinstance(opt, optimizers.Adam):
        return opt.alpha
    raise NotImplementedError()
optim.py 文件源码 项目:chainer-qrnn 作者: musyoku 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def get_optimizer(name, lr, momentum):
    if name == "sgd":
        return optimizers.SGD(lr=lr)
    if name == "msgd":
        return optimizers.MomentumSGD(lr=lr, momentum=momentum)
    if name == "nesterov":
        return optimizers.NesterovAG(lr=lr, momentum=momentum)
    if name == "adam":
        return optimizers.Adam(alpha=lr, beta1=momentum)
    raise NotImplementedError()
nn.py 文件源码 项目:nfp 作者: pfnet 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def __init__(self, d, batchsize, n_train_epoch, n_val_epoch, n_units):
        self.d = d
        self.batchsize = batchsize
        self.n_train_epoch = n_train_epoch
        self.n_val_epoch = n_val_epoch
        self.n_units = n_units
        self.model = L.Classifier(MLP(self.d, self.n_units, 2))
        self.model.o = optimizers.Adam()
        self.model.o.setup(self.model)
fp.py 文件源码 项目:nfp 作者: pfnet 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, d, f, R):
        self.d = d
        self.f = f
        self.R = R
        g = ChainList(*[L.Linear(1, f) for i in six.moves.range(AtomIdMax)])

        H = ChainList(*[ChainList(*[L.Linear(f, f)
                                    for i in six.moves.range(R)])
                        for j in six.moves.range(5)])
        W = ChainList(*[L.Linear(f, d) for i in six.moves.range(R)])
        self.model = Chain(H=H, W=W, g=g)
        self.optimizer = optimizers.Adam()
        self.optimizer.setup(self.model)
nn.py 文件源码 项目:nfp 作者: pfnet 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, d, batchsize, n_train_epoch, n_val_epoch, n_units, gpu):
        self.d = d
        self.batchsize = batchsize
        self.n_train_epoch = n_train_epoch
        self.n_val_epoch = n_val_epoch
        self.n_units = n_units
        self.optimizer = optimizers.Adam()
        self.model = L.Classifier(MLP(self.d, self.n_units, 2))
        if gpu:
            self.model.to_gpu(0)
        self.optimizer.setup(self.model)
model.py 文件源码 项目:self-driving-cars 作者: musyoku 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self):
        Model.__init__(self)

        self.fc = self.build_network(output_dim=len(config.actions))

        self.optimizer_fc = optimizers.Adam(alpha=config.rl_learning_rate, beta1=config.rl_gradient_momentum)
        self.optimizer_fc.setup(self.fc)
        self.optimizer_fc.add_hook(optimizer.GradientClipping(10.0))

        self.load()
        self.update_target()


问题


面经


文章

微信
公众号

扫码关注公众号