python类LSTM的实例源码

lstm.py 文件源码 项目:ROCStory_skipthought_baseline 作者: soskek 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, args):
        super(LSTM, self).__init__(
            # RNN
            LSTM=L.LSTM(args.n_in_units, args.n_units),
            #W_predict=L.Linear(args.n_units, args.n_units),
            W_candidate=L.Linear(args.n_in_units, args.n_units),
        )

        #self.act1 = F.tanh
        self.act1 = F.identity

        self.args = args
        self.n_in_units = args.n_in_units
        self.n_units = args.n_units
        self.dropout_ratio = args.d_ratio
        self.margin = args.margin

        self.initialize_parameters()
state_q_functions.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, n_dim_obs, n_dim_action, n_hidden_channels,
                 n_hidden_layers):
        self.n_input_channels = n_dim_obs
        self.n_hidden_layers = n_hidden_layers
        self.n_hidden_channels = n_hidden_channels
        self.state_stack = []
        super().__init__()
        with self.init_scope():
            self.fc = MLP(in_size=self.n_input_channels,
                          out_size=n_hidden_channels,
                          hidden_sizes=[self.n_hidden_channels] *
                          self.n_hidden_layers)
            self.lstm = L.LSTM(n_hidden_channels, n_hidden_channels)
            self.out = L.Linear(n_hidden_channels, n_dim_action)
LSTMEncDecAttn.py 文件源码 项目:mlpnlp-nmt 作者: mlpnlp 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, n_layers=2, eDim=512, hDim=512, name=""):
        layers = [0] * n_layers  # ????????
        for z in six.moves.range(n_layers):
            if z == 0:  # ???????? eDim
                tDim = eDim
            else:  # ????????????????????????hDim
                tDim = hDim
            layers[z] = chaLink.LSTM(tDim, hDim)
            # log??????????????????????
            layers[z].lateral.W.name = name + "_L%d_la_W" % (z + 1)
            layers[z].upward.W.name = name + "_L%d_up_W" % (z + 1)
            layers[z].upward.b.name = name + "_L%d_up_b" % (z + 1)

        super(NLayerLSTM, self).__init__(*layers)

    # ????????????LSTM???
enc_dec_model.py 文件源码 项目:sentence_similarity 作者: MorinoseiMorizo 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, N_SOURCE_VOCAB, N_TARGET_VOCAB, N_EMBED, N_HIDDEN, train=True):
        super(EncDecModel, self).__init__(
                # Encoder
                enc_embed=L.EmbedID(N_SOURCE_VOCAB, N_EMBED),
                enc_lstm_1=L.LSTM(N_EMBED, N_HIDDEN),
                enc_lstm_2=L.LSTM(N_HIDDEN, N_HIDDEN),
                # Decoder initializer
                enc_dec_1_c=L.Linear(N_HIDDEN, N_HIDDEN),
                enc_dec_1_h=L.Linear(N_HIDDEN, N_HIDDEN),
                enc_dec_2_c=L.Linear(N_HIDDEN, N_HIDDEN),
                enc_dec_2_h=L.Linear(N_HIDDEN, N_HIDDEN),
                # Decoder
                dec_embed=L.EmbedID(N_TARGET_VOCAB, N_EMBED),
                dec_lstm_1=L.LSTM(N_EMBED, N_HIDDEN),
                dec_lstm_2=L.LSTM(N_HIDDEN, N_HIDDEN),
                dec_output=L.Linear(N_HIDDEN, N_TARGET_VOCAB),
        )
        for param in self.params():
            param.data[...] = self.xp.random.uniform(-0.08, 0.08, param.data.shape)
        self.train = train
        self.src_vocab_size = N_SOURCE_VOCAB
        self.trg_vocab_size = N_TARGET_VOCAB
        self.embed_size = N_EMBED
        self.hidden_size = N_HIDDEN
net.py 文件源码 项目:chainer-dqn 作者: dsanno 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, width=150, height=112, channel=3, action_size=100, latent_size=100):
        feature_width = width
        feature_height = height
        for i in range(4):
            feature_width = (feature_width + 1) // 2
            feature_height = (feature_height + 1) // 2
        feature_size = feature_width * feature_height * 64
        super(Q, self).__init__(
            conv1 = L.Convolution2D(channel, 16, 8, stride=4, pad=3),
            conv2 = L.Convolution2D(16, 32, 5, stride=2, pad=2),
            conv3 = L.Convolution2D(32, 64, 5, stride=2, pad=2),
            lstm  = L.LSTM(feature_size, latent_size),
            q     = L.Linear(latent_size, action_size),
        )
        self.width = width
        self.height = height
        self.latent_size = latent_size
lstm.py 文件源码 项目:ROCStory_skipthought_baseline 作者: soskek 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def initialize_LSTM(self, LSTM, initializer):
        initializers.init_weight(LSTM.upward.W.data, initializer)
        initializers.init_weight(LSTM.lateral.W.data, initializer)
lstm.py 文件源码 项目:ROCStory_skipthought_baseline 作者: soskek 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def initialize_parameters(self):
        G_init = initializers.GlorotNormal()

        #initializers.init_weight(self.W_predict.W.data, G_init)
        initializers.init_weight(self.W_candidate.W.data, G_init)
        self.initialize_LSTM(self.LSTM, G_init)
lstm.py 文件源码 项目:ROCStory_skipthought_baseline 作者: soskek 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def solve(self, x_seq, pos, neg, train=True, variablize=False, onebyone=True):
        if variablize:# If arguments are just arrays (not variables), make them variables
            x_seq = [chainer.Variable(x, volatile=not train) for x in x_seq]
            x_seq = [F.dropout(x, ratio=self.dropout_ratio, train=train) for x in x_seq]
            pos = self.act1(self.W_candidate(
                F.dropout(chainer.Variable(pos, volatile=not train),
                          ratio=self.dropout_ratio, train=train)))
            neg = self.act1(self.W_candidate(
                F.dropout(chainer.Variable(neg, volatile=not train),
                          ratio=self.dropout_ratio, train=train)))
        if onebyone and train:
            target_x_seq = [self.act1(self.W_candidate(x)) for x in x_seq[:4]]# 1,2,3,4,5-th targets
            onebyone_loss = 0.

        self.LSTM.reset_state()
        for i, x in enumerate(x_seq):
            h = self.LSTM( F.dropout(x, ratio=self.dropout_ratio, train=train) )
            if onebyone and train and target_x_seq[i+1:]:
                pos_score, neg_score = self.calculate_score(h, target_x_seq[i+1:], neg,
                                                            multipos=True)
                onebyone_loss += F.relu( self.margin - pos_score + neg_score )

        pos_score, neg_score = self.calculate_score(h, pos, neg)
        accum_loss = F.relu( self.margin - pos_score + neg_score )
        TorFs = sum(accum_loss.data < self.margin)

        if onebyone and train:
            return F.sum(accum_loss) + F.sum(onebyone_loss), TorFs
        else:
            return F.sum(accum_loss), TorFs
train_a3c_gym.py 文件源码 项目:ai-bs-summer17 作者: uchibe 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, obs_size, action_size, hidden_size=200, lstm_size=128):
        self.pi_head = L.Linear(obs_size, hidden_size)
        self.v_head = L.Linear(obs_size, hidden_size)
        self.pi_lstm = L.LSTM(hidden_size, lstm_size)
        self.v_lstm = L.LSTM(hidden_size, lstm_size)
        self.pi = policies.LinearGaussianPolicyWithDiagonalCovariance(
            lstm_size, action_size)
        self.v = v_function.FCVFunction(lstm_size)
        super().__init__(self.pi_head, self.v_head,
                         self.pi_lstm, self.v_lstm, self.pi, self.v)
state_action_q_functions.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, n_dim_obs, n_dim_action, n_hidden_channels,
                 n_hidden_layers, nonlinearity=F.relu, last_wscale=1.):
        self.n_input_channels = n_dim_obs + n_dim_action
        self.n_hidden_layers = n_hidden_layers
        self.n_hidden_channels = n_hidden_channels
        self.nonlinearity = nonlinearity
        super().__init__()
        with self.init_scope():
            self.fc = MLP(self.n_input_channels, n_hidden_channels,
                          [self.n_hidden_channels] * self.n_hidden_layers,
                          nonlinearity=nonlinearity,
                          )
            self.lstm = L.LSTM(n_hidden_channels, n_hidden_channels)
            self.out = L.Linear(n_hidden_channels, 1,
                                initialW=LeCunNormal(last_wscale))
deterministic_policy.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, n_input_channels, n_hidden_layers,
                 n_hidden_channels, action_size,
                 min_action=None, max_action=None, bound_action=True,
                 nonlinearity=F.relu,
                 last_wscale=1.):
        self.n_input_channels = n_input_channels
        self.n_hidden_layers = n_hidden_layers
        self.n_hidden_channels = n_hidden_channels
        self.action_size = action_size
        self.min_action = min_action
        self.max_action = max_action
        self.bound_action = bound_action

        if self.bound_action:
            def action_filter(x):
                return bound_by_tanh(
                    x, self.min_action, self.max_action)
        else:
            action_filter = None

        model = chainer.Chain(
            fc=MLP(self.n_input_channels,
                   n_hidden_channels,
                   (self.n_hidden_channels,) * self.n_hidden_layers,
                   nonlinearity=nonlinearity,
                   ),
            lstm=L.LSTM(n_hidden_channels, n_hidden_channels),
            out=L.Linear(n_hidden_channels, action_size,
                         initialW=LeCunNormal(last_wscale)),
        )

        def model_call(model, x):
            h = nonlinearity(model.fc(x))
            h = model.lstm(h)
            h = model.out(h)
            return h

        super().__init__(
            model=model,
            model_call=model_call,
            action_filter=action_filter)
train_a3c_ale.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, n_actions):
        self.head = links.NIPSDQNHead()
        self.pi = policy.FCSoftmaxPolicy(
            self.head.n_output_channels, n_actions)
        self.v = v_function.FCVFunction(self.head.n_output_channels)
        self.lstm = L.LSTM(self.head.n_output_channels,
                           self.head.n_output_channels)
        super().__init__(self.head, self.lstm, self.pi, self.v)
train_a3c_gym.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, obs_size, action_size, hidden_size=200, lstm_size=128):
        self.pi_head = L.Linear(obs_size, hidden_size)
        self.v_head = L.Linear(obs_size, hidden_size)
        self.pi_lstm = L.LSTM(hidden_size, lstm_size)
        self.v_lstm = L.LSTM(hidden_size, lstm_size)
        self.pi = policies.LinearGaussianPolicyWithDiagonalCovariance(
            lstm_size, action_size)
        self.v = v_function.FCVFunction(lstm_size)
        super().__init__(self.pi_head, self.v_head,
                         self.pi_lstm, self.v_lstm, self.pi, self.v)
a3c_ale.py 文件源码 项目:async-rl 作者: muupan 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, n_actions):
        self.head = dqn_head.NIPSDQNHead()
        self.pi = policy.FCSoftmaxPolicy(
            self.head.n_output_channels, n_actions)
        self.v = v_function.FCVFunction(self.head.n_output_channels)
        self.lstm = L.LSTM(self.head.n_output_channels,
                           self.head.n_output_channels)
        super().__init__(self.head, self.lstm, self.pi, self.v)
        init_like_torch(self)
train_a3c_doom.py 文件源码 项目:async-rl 作者: muupan 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, n_actions):
        self.head = dqn_head.NIPSDQNHead(n_input_channels=3)
        self.pi = policy.FCSoftmaxPolicy(
            self.head.n_output_channels, n_actions)
        self.v = v_function.FCVFunction(self.head.n_output_channels)
        self.lstm = L.LSTM(self.head.n_output_channels,
                           self.head.n_output_channels)
        super().__init__(self.head, self.lstm, self.pi, self.v)
        init_like_torch(self)
context_models.py 文件源码 项目:context2vec 作者: orenmel 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, deep, gpu, word2index, in_units, hidden_units, out_units, loss_func, train, drop_ratio=0.0):
        n_vocab = len(word2index)        
        l2r_embedding=F.EmbedID(n_vocab, in_units)
        r2l_embedding=F.EmbedID(n_vocab, in_units)

        if deep:
            super(BiLstmContext, self).__init__(
                l2r_embed=l2r_embedding,
                r2l_embed=r2l_embedding,
                loss_func=loss_func,
                l2r_1 = L.LSTM(in_units, hidden_units),
                r2l_1 = L.LSTM(in_units, hidden_units),
                l3 = L.Linear(2*hidden_units, 2*hidden_units),
                l4 = L.Linear(2*hidden_units, out_units),
            )
        else:
            super(BiLstmContext, self).__init__(
                l2r_embed=l2r_embedding,
                r2l_embed=r2l_embedding,
                loss_func=loss_func,
                l2r_1 = L.LSTM(in_units, hidden_units),
                r2l_1 = L.LSTM(in_units, hidden_units),
                lp_l2r = L.Linear(hidden_units, out_units/2),
                lp_r2l = L.Linear(hidden_units, out_units/2)

            )
        if gpu >=0:
            self.to_gpu()
        l2r_embedding.W.data = self.xp.random.normal(0, math.sqrt(1. / l2r_embedding.W.data.shape[0]), l2r_embedding.W.data.shape).astype(np.float32)       
        r2l_embedding.W.data = self.xp.random.normal(0, math.sqrt(1. / r2l_embedding.W.data.shape[0]), r2l_embedding.W.data.shape).astype(np.float32)

        self.word2index = word2index
        self.train = train
        self.deep = deep
        self.drop_ratio = drop_ratio
LSTM.py 文件源码 项目:lesson 作者: SPJ-AI 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, n_vocab, n_units):
        #n_units = ??????????
        super(LSTM, self).__init__(
            embed=L.EmbedID(n_vocab, n_units, ignore_label=-1),
            l1=L.LSTM(n_units, n_units),
            l2=L.Linear(n_units, n_vocab)
        )
net.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, n_vocab, n_units, train=True):
        super(RNNLM, self).__init__(
            embed=L.EmbedID(n_vocab, n_units),
            l1=L.LSTM(n_units, n_units),
            l2=L.LSTM(n_units, n_units),
            l3=L.Linear(n_units, n_vocab),
        )
        self.train = train
test_lstm.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def setUp(self):
        self.link = links.LSTM(self.in_size, self.out_size)
        upward = self.link.upward.W.data
        upward[...] = numpy.random.uniform(-1, 1, upward.shape)
        lateral = self.link.lateral.W.data
        lateral[...] = numpy.random.uniform(-1, 1, lateral.shape)
        self.link.zerograds()

        self.upward = upward.copy()  # fixed on CPU
        self.lateral = lateral.copy()  # fixed on CPU

        x_shape = (4, self.in_size)
        self.x = numpy.random.uniform(-1, 1, x_shape).astype(numpy.float32)
test_lstm.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def setUp(self):
        self.link = links.LSTM(5, 7)
        self.x = chainer.Variable(
            numpy.random.uniform(-1, 1, (3, 5)).astype(numpy.float32))
test_lstm.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def setUp(self):
        self.link = links.LSTM(5, 7)
        self.x = chainer.Variable(
            numpy.random.uniform(-1, 1, (3, 5)).astype(numpy.float32))
utils_subword_rnn.py 文件源码 项目:vsmlib 作者: undertherain 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, n_vocab_char, n_units, n_units_char, index2charIds, dropout=.2):  #dropout ratio, zero indicates no dropout
        super(RNN, self).__init__()
        with self.init_scope():
            self.embed = L.EmbedID(
                n_vocab_char, n_units_char, initialW=I.Uniform(1. / n_units_char))  # word embedding
            self.mid = L.LSTM(n_units_char, n_units_char)  # the first LSTM layer
            self.out = L.Linear(n_units_char, n_units)  # the feed-forward output layer
            self.dropout = dropout
            self.index2charIds = index2charIds
utils_subword_rnn.py 文件源码 项目:vsmlib 作者: undertherain 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def charRNN(self, context):  # input a list of word ids, output a list of word embeddings
        # if chainer.config.train:
        #     print("train")
        # else:
        #     print("test")
        contexts2charIds = self.index2charIds[context]

        #sorting the context_char, make sure array length in descending order
        # ref: https://docs.chainer.org/en/stable/reference/generated/chainer.links.LSTM.html?highlight=Variable-length
        context_char_length = np.array([len(t) for t in contexts2charIds])
        argsort = context_char_length.argsort()[::-1] # descending order
        argsort_reverse = np.zeros(len(argsort), dtype=np.int32)  # this is used to restore the original order
        for i in range(len(argsort)):
            argsort_reverse[argsort[i]] = i
        contexts2charIds = contexts2charIds[context_char_length.argsort()[::-1]]

        #transpose a 2D list/numpy array
        rnn_inputs = [[] for i in range(len(contexts2charIds[0]))]
        for j in range(len(contexts2charIds)) :
            for i in range(len(contexts2charIds[j])):
                rnn_inputs[i].append(contexts2charIds[j][i])

        self.reset_state()
        for i in range(len(rnn_inputs)):
            y_ = self(np.array(rnn_inputs[i], np.int32))
        y = self.out(self.mid.h)
        y = y[argsort_reverse] # restore the original order
        return y
train_word2vec_subword_chainer_input.py 文件源码 项目:vsmlib 作者: undertherain 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, n_vocab_char, n_units, n_units_char):
        super(RNN, self).__init__()
        with self.init_scope():
            self.embed = L.EmbedID(
                n_vocab_char, n_units_char, initialW=I.Uniform(1. / n_units_char))  # word embedding
            self.mid = L.LSTM(n_units_char, n_units_char)  # the first LSTM layer
            self.out = L.Linear(n_units_char, n_units)  # the feed-forward output layer
train_word2vec_subword_chainer_input.py 文件源码 项目:vsmlib 作者: undertherain 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def charRNN(self, context):  # input a list of word ids, output a list of word embeddings
        # if chainer.config.train:
        #     print("train")
        # else:
        #     print("test")
        contexts2charIds = index2charIds[context]

        #sorting the context_char, make sure array length in descending order
        # ref: https://docs.chainer.org/en/stable/reference/generated/chainer.links.LSTM.html?highlight=Variable-length
        context_char_length = np.array([len(t) for t in contexts2charIds])
        argsort = context_char_length.argsort()[::-1] # descending order
        argsort_reverse = np.zeros(len(argsort), dtype=np.int32)  # this is used to restore the original order
        for i in range(len(argsort)):
            argsort_reverse[argsort[i]] = i
        contexts2charIds = contexts2charIds[context_char_length.argsort()[::-1]]

        #transpose a 2D list/numpy array
        rnn_inputs = [[] for i in range(len(contexts2charIds[0]))]
        for j in range(len(contexts2charIds)) :
            for i in range(len(contexts2charIds[j])):
                rnn_inputs[i].append(contexts2charIds[j][i])

        self.reset_state()
        for i in range(len(rnn_inputs)):
            y_ = self(np.array(rnn_inputs[i], np.int32))
        y = self.out(self.mid.h)
        y = y[argsort_reverse] # restore the original order
        return y
parse01.py 文件源码 项目:nn_parsers 作者: odashi 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, input_size, output_size):
    super(StackedLSTM, self).__init__(
      links.LSTM(input_size, output_size),
      links.LSTM(output_size, output_size),
      #links.LSTM(output_size, output_size),
    )
parse02b.py 文件源码 项目:nn_parsers 作者: odashi 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, input_size, output_size):
    super(Encoder, self).__init__(
      x_f = links.LSTM(input_size, output_size),
      x_b = links.LSTM(input_size, output_size),
      f_y = links.Linear(output_size, output_size),
      b_y = links.Linear(output_size, output_size),
    )
parse02a.py 文件源码 项目:nn_parsers 作者: odashi 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, input_size, output_size):
    super(Encoder, self).__init__(
      x_f = links.LSTM(input_size, output_size),
      x_b = links.LSTM(input_size, output_size),
      f_y = links.Linear(output_size, output_size),
      b_y = links.Linear(output_size, output_size),
    )
parse02.py 文件源码 项目:nn_parsers 作者: odashi 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, input_size, output_size):
    super(Encoder, self).__init__(
      x_f = links.LSTM(input_size, output_size),
      x_b = links.LSTM(input_size, output_size),
      f_y = links.Linear(output_size, output_size),
      b_y = links.Linear(output_size, output_size),
    )
parse03.py 文件源码 项目:nn_parsers 作者: odashi 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, vocab_size, embed_size):
    super(Embed, self).__init__(
      c_x = links.EmbedID(0x80, 32),
      x_f = links.LSTM(32, embed_size),
      x_b = links.LSTM(32, embed_size),
      w_e = links.EmbedID(vocab_size, embed_size),
      f_e = links.Linear(embed_size, embed_size),
      b_e = links.Linear(embed_size, embed_size),
    )


问题


面经


文章

微信
公众号

扫码关注公众号